MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnwo Unicode version

Theorem nnwo 10526
Description: Well-ordering principle: any non-empty set of natural numbers has a least element. Theorem I.37 (well-ordering principle) of [Apostol] p. 34. (Contributed by NM, 17-Aug-2001.)
Assertion
Ref Expression
nnwo  |-  ( ( A  C_  NN  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  x  <_  y )
Distinct variable group:    x, y, A

Proof of Theorem nnwo
StepHypRef Expression
1 nnuz 10505 . . 3  |-  NN  =  ( ZZ>= `  1 )
21sseq2i 3360 . 2  |-  ( A 
C_  NN  <->  A  C_  ( ZZ>= ` 
1 ) )
3 uzwo 10523 . 2  |-  ( ( A  C_  ( ZZ>= ` 
1 )  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  x  <_  y )
42, 3sylanb 459 1  |-  ( ( A  C_  NN  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  x  <_  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    =/= wne 2593   A.wral 2692   E.wrex 2693    C_ wss 3307   (/)c0 3615   class class class wbr 4199   ` cfv 5440   1c1 8975    <_ cle 9105   NNcn 9984   ZZ>=cuz 10472
This theorem is referenced by:  nnwof  10527  rpnnen2  12808  stoweidlem14  27672  stoweidlem34  27692
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687  ax-cnex 9030  ax-resscn 9031  ax-1cn 9032  ax-icn 9033  ax-addcl 9034  ax-addrcl 9035  ax-mulcl 9036  ax-mulrcl 9037  ax-mulcom 9038  ax-addass 9039  ax-mulass 9040  ax-distr 9041  ax-i2m1 9042  ax-1ne0 9043  ax-1rid 9044  ax-rnegex 9045  ax-rrecex 9046  ax-cnre 9047  ax-pre-lttri 9048  ax-pre-lttrn 9049  ax-pre-ltadd 9050  ax-pre-mulgt0 9051
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-we 4530  df-ord 4571  df-on 4572  df-lim 4573  df-suc 4574  df-om 4832  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-riota 6535  df-recs 6619  df-rdg 6654  df-er 6891  df-en 7096  df-dom 7097  df-sdom 7098  df-pnf 9106  df-mnf 9107  df-xr 9108  df-ltxr 9109  df-le 9110  df-sub 9277  df-neg 9278  df-nn 9985  df-n0 10206  df-z 10267  df-uz 10473
  Copyright terms: Public domain W3C validator