Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nolimf Unicode version

Theorem nolimf 24785
Description: A numerical function has at most one limit value. (Contributed by FL, 14-Nov-2010.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypothesis
Ref Expression
nolimf.j  |-  J  =  ( topGen `  ran  (,) )
Assertion
Ref Expression
nolimf  |-  ( ( L  e.  ( Fil `  Y )  /\  F : Y --> RR )  ->  E* x  x  e.  ( ( J  fLimf  L ) `  F ) )
Distinct variable groups:    x, F    x, J    x, L    x, Y

Proof of Theorem nolimf
StepHypRef Expression
1 nolimf.j . . 3  |-  J  =  ( topGen `  ran  (,) )
2 rehaus 18137 . . 3  |-  ( topGen ` 
ran  (,) )  e.  Haus
31, 2eqeltri 2323 . 2  |-  J  e. 
Haus
4 uniretop 18103 . . . 4  |-  RR  =  U. ( topGen `  ran  (,) )
51unieqi 3737 . . . 4  |-  U. J  =  U. ( topGen `  ran  (,) )
64, 5eqtr4i 2276 . . 3  |-  RR  =  U. J
76hausflf 17524 . 2  |-  ( ( J  e.  Haus  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> RR )  ->  E* x  x  e.  (
( J  fLimf  L ) `
 F ) )
83, 7mp3an1 1269 1  |-  ( ( L  e.  ( Fil `  Y )  /\  F : Y --> RR )  ->  E* x  x  e.  ( ( J  fLimf  L ) `  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   E*wmo 2115   U.cuni 3727   ran crn 4581   -->wf 4588   ` cfv 4592  (class class class)co 5710   RRcr 8616   (,)cioo 10534   topGenctg 13216   Hauscha 16868   Filcfil 17372    fLimf cflf 17462
This theorem is referenced by:  nolimf2  24786
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-icc 10541  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-topgen 13218  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-top 16468  df-bases 16470  df-topon 16471  df-nei 16667  df-haus 16875  df-fbas 17352  df-fil 17373  df-flim 17466  df-flf 17467
  Copyright terms: Public domain W3C validator