HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nonbooli Unicode version

Theorem nonbooli 22230
Description: A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where 
( ( H  i^i  F )  vH  ( H  i^i  G ) )  =  0H but  ( H  i^i  ( F  vH  G ) )  =/=  0H. The antecedent specifies that the vectors  A and  B are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to  F,  G, and  H. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
nonbool.1  |-  A  e. 
~H
nonbool.2  |-  B  e. 
~H
nonbool.3  |-  F  =  ( span `  { A } )
nonbool.4  |-  G  =  ( span `  { B } )
nonbool.5  |-  H  =  ( span `  {
( A  +h  B
) } )
Assertion
Ref Expression
nonbooli  |-  ( -.  ( A  e.  G  \/  B  e.  F
)  ->  ( H  i^i  ( F  vH  G
) )  =/=  (
( H  i^i  F
)  vH  ( H  i^i  G ) ) )

Proof of Theorem nonbooli
StepHypRef Expression
1 nonbool.1 . . . . . . . . . . . . 13  |-  A  e. 
~H
2 nonbool.2 . . . . . . . . . . . . 13  |-  B  e. 
~H
31, 2hvaddcli 21598 . . . . . . . . . . . 12  |-  ( A  +h  B )  e. 
~H
4 spansnid 22142 . . . . . . . . . . . 12  |-  ( ( A  +h  B )  e.  ~H  ->  ( A  +h  B )  e.  ( span `  {
( A  +h  B
) } ) )
53, 4ax-mp 8 . . . . . . . . . . 11  |-  ( A  +h  B )  e.  ( span `  {
( A  +h  B
) } )
6 nonbool.5 . . . . . . . . . . 11  |-  H  =  ( span `  {
( A  +h  B
) } )
75, 6eleqtrri 2356 . . . . . . . . . 10  |-  ( A  +h  B )  e.  H
8 nonbool.3 . . . . . . . . . . . . 13  |-  F  =  ( span `  { A } )
91spansnchi 22141 . . . . . . . . . . . . . 14  |-  ( span `  { A } )  e.  CH
109chshii 21807 . . . . . . . . . . . . 13  |-  ( span `  { A } )  e.  SH
118, 10eqeltri 2353 . . . . . . . . . . . 12  |-  F  e.  SH
12 nonbool.4 . . . . . . . . . . . . 13  |-  G  =  ( span `  { B } )
132spansnchi 22141 . . . . . . . . . . . . . 14  |-  ( span `  { B } )  e.  CH
1413chshii 21807 . . . . . . . . . . . . 13  |-  ( span `  { B } )  e.  SH
1512, 14eqeltri 2353 . . . . . . . . . . . 12  |-  G  e.  SH
1611, 15shsleji 21949 . . . . . . . . . . 11  |-  ( F  +H  G )  C_  ( F  vH  G )
17 spansnid 22142 . . . . . . . . . . . . . 14  |-  ( A  e.  ~H  ->  A  e.  ( span `  { A } ) )
181, 17ax-mp 8 . . . . . . . . . . . . 13  |-  A  e.  ( span `  { A } )
1918, 8eleqtrri 2356 . . . . . . . . . . . 12  |-  A  e.  F
20 spansnid 22142 . . . . . . . . . . . . . 14  |-  ( B  e.  ~H  ->  B  e.  ( span `  { B } ) )
212, 20ax-mp 8 . . . . . . . . . . . . 13  |-  B  e.  ( span `  { B } )
2221, 12eleqtrri 2356 . . . . . . . . . . . 12  |-  B  e.  G
2311, 15shsvai 21943 . . . . . . . . . . . 12  |-  ( ( A  e.  F  /\  B  e.  G )  ->  ( A  +h  B
)  e.  ( F  +H  G ) )
2419, 22, 23mp2an 653 . . . . . . . . . . 11  |-  ( A  +h  B )  e.  ( F  +H  G
)
2516, 24sselii 3177 . . . . . . . . . 10  |-  ( A  +h  B )  e.  ( F  vH  G
)
26 elin 3358 . . . . . . . . . 10  |-  ( ( A  +h  B )  e.  ( H  i^i  ( F  vH  G ) )  <->  ( ( A  +h  B )  e.  H  /\  ( A  +h  B )  e.  ( F  vH  G
) ) )
277, 25, 26mpbir2an 886 . . . . . . . . 9  |-  ( A  +h  B )  e.  ( H  i^i  ( F  vH  G ) )
28 eleq2 2344 . . . . . . . . 9  |-  ( ( H  i^i  ( F  vH  G ) )  =  0H  ->  (
( A  +h  B
)  e.  ( H  i^i  ( F  vH  G ) )  <->  ( A  +h  B )  e.  0H ) )
2927, 28mpbii 202 . . . . . . . 8  |-  ( ( H  i^i  ( F  vH  G ) )  =  0H  ->  ( A  +h  B )  e.  0H )
30 elch0 21833 . . . . . . . 8  |-  ( ( A  +h  B )  e.  0H  <->  ( A  +h  B )  =  0h )
3129, 30sylib 188 . . . . . . 7  |-  ( ( H  i^i  ( F  vH  G ) )  =  0H  ->  ( A  +h  B )  =  0h )
32 ch0 21808 . . . . . . . 8  |-  ( (
span `  { A } )  e.  CH  ->  0h  e.  ( span `  { A } ) )
339, 32ax-mp 8 . . . . . . 7  |-  0h  e.  ( span `  { A } )
3431, 33syl6eqel 2371 . . . . . 6  |-  ( ( H  i^i  ( F  vH  G ) )  =  0H  ->  ( A  +h  B )  e.  ( span `  { A } ) )
358eleq2i 2347 . . . . . . 7  |-  ( B  e.  F  <->  B  e.  ( span `  { A } ) )
36 sumspansn 22228 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  +h  B )  e.  (
span `  { A } )  <->  B  e.  ( span `  { A } ) ) )
371, 2, 36mp2an 653 . . . . . . 7  |-  ( ( A  +h  B )  e.  ( span `  { A } )  <->  B  e.  ( span `  { A } ) )
3835, 37bitr4i 243 . . . . . 6  |-  ( B  e.  F  <->  ( A  +h  B )  e.  (
span `  { A } ) )
3934, 38sylibr 203 . . . . 5  |-  ( ( H  i^i  ( F  vH  G ) )  =  0H  ->  B  e.  F )
4039con3i 127 . . . 4  |-  ( -.  B  e.  F  ->  -.  ( H  i^i  ( F  vH  G ) )  =  0H )
4140adantl 452 . . 3  |-  ( ( -.  A  e.  G  /\  -.  B  e.  F
)  ->  -.  ( H  i^i  ( F  vH  G ) )  =  0H )
426, 8ineq12i 3368 . . . . . 6  |-  ( H  i^i  F )  =  ( ( span `  {
( A  +h  B
) } )  i^i  ( span `  { A } ) )
433, 1spansnm0i 22229 . . . . . . 7  |-  ( -.  ( A  +h  B
)  e.  ( span `  { A } )  ->  ( ( span `  { ( A  +h  B ) } )  i^i  ( span `  { A } ) )  =  0H )
4438, 43sylnbi 297 . . . . . 6  |-  ( -.  B  e.  F  -> 
( ( span `  {
( A  +h  B
) } )  i^i  ( span `  { A } ) )  =  0H )
4542, 44syl5eq 2327 . . . . 5  |-  ( -.  B  e.  F  -> 
( H  i^i  F
)  =  0H )
466, 12ineq12i 3368 . . . . . 6  |-  ( H  i^i  G )  =  ( ( span `  {
( A  +h  B
) } )  i^i  ( span `  { B } ) )
47 sumspansn 22228 . . . . . . . . 9  |-  ( ( B  e.  ~H  /\  A  e.  ~H )  ->  ( ( B  +h  A )  e.  (
span `  { B } )  <->  A  e.  ( span `  { B } ) ) )
482, 1, 47mp2an 653 . . . . . . . 8  |-  ( ( B  +h  A )  e.  ( span `  { B } )  <->  A  e.  ( span `  { B } ) )
491, 2hvcomi 21599 . . . . . . . . 9  |-  ( A  +h  B )  =  ( B  +h  A
)
5049eleq1i 2346 . . . . . . . 8  |-  ( ( A  +h  B )  e.  ( span `  { B } )  <->  ( B  +h  A )  e.  (
span `  { B } ) )
5112eleq2i 2347 . . . . . . . 8  |-  ( A  e.  G  <->  A  e.  ( span `  { B } ) )
5248, 50, 513bitr4ri 269 . . . . . . 7  |-  ( A  e.  G  <->  ( A  +h  B )  e.  (
span `  { B } ) )
533, 2spansnm0i 22229 . . . . . . 7  |-  ( -.  ( A  +h  B
)  e.  ( span `  { B } )  ->  ( ( span `  { ( A  +h  B ) } )  i^i  ( span `  { B } ) )  =  0H )
5452, 53sylnbi 297 . . . . . 6  |-  ( -.  A  e.  G  -> 
( ( span `  {
( A  +h  B
) } )  i^i  ( span `  { B } ) )  =  0H )
5546, 54syl5eq 2327 . . . . 5  |-  ( -.  A  e.  G  -> 
( H  i^i  G
)  =  0H )
5645, 55oveqan12rd 5878 . . . 4  |-  ( ( -.  A  e.  G  /\  -.  B  e.  F
)  ->  ( ( H  i^i  F )  vH  ( H  i^i  G ) )  =  ( 0H 
vH  0H ) )
57 h0elch 21834 . . . . 5  |-  0H  e.  CH
5857chj0i 22034 . . . 4  |-  ( 0H 
vH  0H )  =  0H
5956, 58syl6eq 2331 . . 3  |-  ( ( -.  A  e.  G  /\  -.  B  e.  F
)  ->  ( ( H  i^i  F )  vH  ( H  i^i  G ) )  =  0H )
60 eqeq2 2292 . . . . 5  |-  ( ( ( H  i^i  F
)  vH  ( H  i^i  G ) )  =  0H  ->  ( ( H  i^i  ( F  vH  G ) )  =  ( ( H  i^i  F )  vH  ( H  i^i  G ) )  <-> 
( H  i^i  ( F  vH  G ) )  =  0H ) )
6160notbid 285 . . . 4  |-  ( ( ( H  i^i  F
)  vH  ( H  i^i  G ) )  =  0H  ->  ( -.  ( H  i^i  ( F  vH  G ) )  =  ( ( H  i^i  F )  vH  ( H  i^i  G ) )  <->  -.  ( H  i^i  ( F  vH  G
) )  =  0H ) )
6261biimparc 473 . . 3  |-  ( ( -.  ( H  i^i  ( F  vH  G ) )  =  0H  /\  ( ( H  i^i  F )  vH  ( H  i^i  G ) )  =  0H )  ->  -.  ( H  i^i  ( F  vH  G ) )  =  ( ( H  i^i  F )  vH  ( H  i^i  G ) ) )
6341, 59, 62syl2anc 642 . 2  |-  ( ( -.  A  e.  G  /\  -.  B  e.  F
)  ->  -.  ( H  i^i  ( F  vH  G ) )  =  ( ( H  i^i  F )  vH  ( H  i^i  G ) ) )
64 ioran 476 . 2  |-  ( -.  ( A  e.  G  \/  B  e.  F
)  <->  ( -.  A  e.  G  /\  -.  B  e.  F ) )
65 df-ne 2448 . 2  |-  ( ( H  i^i  ( F  vH  G ) )  =/=  ( ( H  i^i  F )  vH  ( H  i^i  G ) )  <->  -.  ( H  i^i  ( F  vH  G
) )  =  ( ( H  i^i  F
)  vH  ( H  i^i  G ) ) )
6663, 64, 653imtr4i 257 1  |-  ( -.  ( A  e.  G  \/  B  e.  F
)  ->  ( H  i^i  ( F  vH  G
) )  =/=  (
( H  i^i  F
)  vH  ( H  i^i  G ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446    i^i cin 3151   {csn 3640   ` cfv 5255  (class class class)co 5858   ~Hchil 21499    +h cva 21500   0hc0v 21504   SHcsh 21508   CHcch 21509    +H cph 21511   spancspn 21512    vH chj 21513   0Hc0h 21515
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817  ax-hilex 21579  ax-hfvadd 21580  ax-hvcom 21581  ax-hvass 21582  ax-hv0cl 21583  ax-hvaddid 21584  ax-hfvmul 21585  ax-hvmulid 21586  ax-hvmulass 21587  ax-hvdistr1 21588  ax-hvdistr2 21589  ax-hvmul0 21590  ax-hfi 21658  ax-his1 21661  ax-his2 21662  ax-his3 21663  ax-his4 21664  ax-hcompl 21781
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-cn 16957  df-cnp 16958  df-lm 16959  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cfil 18681  df-cau 18682  df-cmet 18683  df-grpo 20858  df-gid 20859  df-ginv 20860  df-gdiv 20861  df-ablo 20949  df-subgo 20969  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-vs 21155  df-nmcv 21156  df-ims 21157  df-dip 21274  df-ssp 21298  df-ph 21391  df-cbn 21442  df-hnorm 21548  df-hba 21549  df-hvsub 21551  df-hlim 21552  df-hcau 21553  df-sh 21786  df-ch 21801  df-oc 21831  df-ch0 21832  df-shs 21887  df-span 21888  df-chj 21889
  Copyright terms: Public domain W3C validator