HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nonbooli Unicode version

Theorem nonbooli 22173
Description: A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where 
( ( H  i^i  F )  vH  ( H  i^i  G ) )  =  0H but  ( H  i^i  ( F  vH  G ) )  =/=  0H. The antecedent specifies that the vectors  A and  B are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to  F,  G, and  H. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
nonbool.1  |-  A  e. 
~H
nonbool.2  |-  B  e. 
~H
nonbool.3  |-  F  =  ( span `  { A } )
nonbool.4  |-  G  =  ( span `  { B } )
nonbool.5  |-  H  =  ( span `  {
( A  +h  B
) } )
Assertion
Ref Expression
nonbooli  |-  ( -.  ( A  e.  G  \/  B  e.  F
)  ->  ( H  i^i  ( F  vH  G
) )  =/=  (
( H  i^i  F
)  vH  ( H  i^i  G ) ) )

Proof of Theorem nonbooli
StepHypRef Expression
1 nonbool.1 . . . . . . . . . . . . 13  |-  A  e. 
~H
2 nonbool.2 . . . . . . . . . . . . 13  |-  B  e. 
~H
31, 2hvaddcli 21523 . . . . . . . . . . . 12  |-  ( A  +h  B )  e. 
~H
4 spansnid 22067 . . . . . . . . . . . 12  |-  ( ( A  +h  B )  e.  ~H  ->  ( A  +h  B )  e.  ( span `  {
( A  +h  B
) } ) )
53, 4ax-mp 10 . . . . . . . . . . 11  |-  ( A  +h  B )  e.  ( span `  {
( A  +h  B
) } )
6 nonbool.5 . . . . . . . . . . 11  |-  H  =  ( span `  {
( A  +h  B
) } )
75, 6eleqtrri 2329 . . . . . . . . . 10  |-  ( A  +h  B )  e.  H
8 nonbool.3 . . . . . . . . . . . . 13  |-  F  =  ( span `  { A } )
91spansnchi 22066 . . . . . . . . . . . . . 14  |-  ( span `  { A } )  e.  CH
109chshii 21732 . . . . . . . . . . . . 13  |-  ( span `  { A } )  e.  SH
118, 10eqeltri 2326 . . . . . . . . . . . 12  |-  F  e.  SH
12 nonbool.4 . . . . . . . . . . . . 13  |-  G  =  ( span `  { B } )
132spansnchi 22066 . . . . . . . . . . . . . 14  |-  ( span `  { B } )  e.  CH
1413chshii 21732 . . . . . . . . . . . . 13  |-  ( span `  { B } )  e.  SH
1512, 14eqeltri 2326 . . . . . . . . . . . 12  |-  G  e.  SH
1611, 15shsleji 21874 . . . . . . . . . . 11  |-  ( F  +H  G )  C_  ( F  vH  G )
17 spansnid 22067 . . . . . . . . . . . . . 14  |-  ( A  e.  ~H  ->  A  e.  ( span `  { A } ) )
181, 17ax-mp 10 . . . . . . . . . . . . 13  |-  A  e.  ( span `  { A } )
1918, 8eleqtrri 2329 . . . . . . . . . . . 12  |-  A  e.  F
20 spansnid 22067 . . . . . . . . . . . . . 14  |-  ( B  e.  ~H  ->  B  e.  ( span `  { B } ) )
212, 20ax-mp 10 . . . . . . . . . . . . 13  |-  B  e.  ( span `  { B } )
2221, 12eleqtrri 2329 . . . . . . . . . . . 12  |-  B  e.  G
2311, 15shsvai 21868 . . . . . . . . . . . 12  |-  ( ( A  e.  F  /\  B  e.  G )  ->  ( A  +h  B
)  e.  ( F  +H  G ) )
2419, 22, 23mp2an 656 . . . . . . . . . . 11  |-  ( A  +h  B )  e.  ( F  +H  G
)
2516, 24sselii 3119 . . . . . . . . . 10  |-  ( A  +h  B )  e.  ( F  vH  G
)
26 elin 3300 . . . . . . . . . 10  |-  ( ( A  +h  B )  e.  ( H  i^i  ( F  vH  G ) )  <->  ( ( A  +h  B )  e.  H  /\  ( A  +h  B )  e.  ( F  vH  G
) ) )
277, 25, 26mpbir2an 891 . . . . . . . . 9  |-  ( A  +h  B )  e.  ( H  i^i  ( F  vH  G ) )
28 eleq2 2317 . . . . . . . . 9  |-  ( ( H  i^i  ( F  vH  G ) )  =  0H  ->  (
( A  +h  B
)  e.  ( H  i^i  ( F  vH  G ) )  <->  ( A  +h  B )  e.  0H ) )
2927, 28mpbii 204 . . . . . . . 8  |-  ( ( H  i^i  ( F  vH  G ) )  =  0H  ->  ( A  +h  B )  e.  0H )
30 elch0 21758 . . . . . . . 8  |-  ( ( A  +h  B )  e.  0H  <->  ( A  +h  B )  =  0h )
3129, 30sylib 190 . . . . . . 7  |-  ( ( H  i^i  ( F  vH  G ) )  =  0H  ->  ( A  +h  B )  =  0h )
32 ch0 21733 . . . . . . . 8  |-  ( (
span `  { A } )  e.  CH  ->  0h  e.  ( span `  { A } ) )
339, 32ax-mp 10 . . . . . . 7  |-  0h  e.  ( span `  { A } )
3431, 33syl6eqel 2344 . . . . . 6  |-  ( ( H  i^i  ( F  vH  G ) )  =  0H  ->  ( A  +h  B )  e.  ( span `  { A } ) )
358eleq2i 2320 . . . . . . 7  |-  ( B  e.  F  <->  B  e.  ( span `  { A } ) )
36 sumspansn 22171 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  +h  B )  e.  (
span `  { A } )  <->  B  e.  ( span `  { A } ) ) )
371, 2, 36mp2an 656 . . . . . . 7  |-  ( ( A  +h  B )  e.  ( span `  { A } )  <->  B  e.  ( span `  { A } ) )
3835, 37bitr4i 245 . . . . . 6  |-  ( B  e.  F  <->  ( A  +h  B )  e.  (
span `  { A } ) )
3934, 38sylibr 205 . . . . 5  |-  ( ( H  i^i  ( F  vH  G ) )  =  0H  ->  B  e.  F )
4039con3i 129 . . . 4  |-  ( -.  B  e.  F  ->  -.  ( H  i^i  ( F  vH  G ) )  =  0H )
4140adantl 454 . . 3  |-  ( ( -.  A  e.  G  /\  -.  B  e.  F
)  ->  -.  ( H  i^i  ( F  vH  G ) )  =  0H )
426, 8ineq12i 3310 . . . . . 6  |-  ( H  i^i  F )  =  ( ( span `  {
( A  +h  B
) } )  i^i  ( span `  { A } ) )
433, 1spansnm0i 22172 . . . . . . 7  |-  ( -.  ( A  +h  B
)  e.  ( span `  { A } )  ->  ( ( span `  { ( A  +h  B ) } )  i^i  ( span `  { A } ) )  =  0H )
4438, 43sylnbi 299 . . . . . 6  |-  ( -.  B  e.  F  -> 
( ( span `  {
( A  +h  B
) } )  i^i  ( span `  { A } ) )  =  0H )
4542, 44syl5eq 2300 . . . . 5  |-  ( -.  B  e.  F  -> 
( H  i^i  F
)  =  0H )
466, 12ineq12i 3310 . . . . . 6  |-  ( H  i^i  G )  =  ( ( span `  {
( A  +h  B
) } )  i^i  ( span `  { B } ) )
47 sumspansn 22171 . . . . . . . . 9  |-  ( ( B  e.  ~H  /\  A  e.  ~H )  ->  ( ( B  +h  A )  e.  (
span `  { B } )  <->  A  e.  ( span `  { B } ) ) )
482, 1, 47mp2an 656 . . . . . . . 8  |-  ( ( B  +h  A )  e.  ( span `  { B } )  <->  A  e.  ( span `  { B } ) )
491, 2hvcomi 21524 . . . . . . . . 9  |-  ( A  +h  B )  =  ( B  +h  A
)
5049eleq1i 2319 . . . . . . . 8  |-  ( ( A  +h  B )  e.  ( span `  { B } )  <->  ( B  +h  A )  e.  (
span `  { B } ) )
5112eleq2i 2320 . . . . . . . 8  |-  ( A  e.  G  <->  A  e.  ( span `  { B } ) )
5248, 50, 513bitr4ri 271 . . . . . . 7  |-  ( A  e.  G  <->  ( A  +h  B )  e.  (
span `  { B } ) )
533, 2spansnm0i 22172 . . . . . . 7  |-  ( -.  ( A  +h  B
)  e.  ( span `  { B } )  ->  ( ( span `  { ( A  +h  B ) } )  i^i  ( span `  { B } ) )  =  0H )
5452, 53sylnbi 299 . . . . . 6  |-  ( -.  A  e.  G  -> 
( ( span `  {
( A  +h  B
) } )  i^i  ( span `  { B } ) )  =  0H )
5546, 54syl5eq 2300 . . . . 5  |-  ( -.  A  e.  G  -> 
( H  i^i  G
)  =  0H )
5645, 55oveqan12rd 5777 . . . 4  |-  ( ( -.  A  e.  G  /\  -.  B  e.  F
)  ->  ( ( H  i^i  F )  vH  ( H  i^i  G ) )  =  ( 0H 
vH  0H ) )
57 h0elch 21759 . . . . 5  |-  0H  e.  CH
5857chj0i 21959 . . . 4  |-  ( 0H 
vH  0H )  =  0H
5956, 58syl6eq 2304 . . 3  |-  ( ( -.  A  e.  G  /\  -.  B  e.  F
)  ->  ( ( H  i^i  F )  vH  ( H  i^i  G ) )  =  0H )
60 eqeq2 2265 . . . . 5  |-  ( ( ( H  i^i  F
)  vH  ( H  i^i  G ) )  =  0H  ->  ( ( H  i^i  ( F  vH  G ) )  =  ( ( H  i^i  F )  vH  ( H  i^i  G ) )  <-> 
( H  i^i  ( F  vH  G ) )  =  0H ) )
6160notbid 287 . . . 4  |-  ( ( ( H  i^i  F
)  vH  ( H  i^i  G ) )  =  0H  ->  ( -.  ( H  i^i  ( F  vH  G ) )  =  ( ( H  i^i  F )  vH  ( H  i^i  G ) )  <->  -.  ( H  i^i  ( F  vH  G
) )  =  0H ) )
6261biimparc 475 . . 3  |-  ( ( -.  ( H  i^i  ( F  vH  G ) )  =  0H  /\  ( ( H  i^i  F )  vH  ( H  i^i  G ) )  =  0H )  ->  -.  ( H  i^i  ( F  vH  G ) )  =  ( ( H  i^i  F )  vH  ( H  i^i  G ) ) )
6341, 59, 62syl2anc 645 . 2  |-  ( ( -.  A  e.  G  /\  -.  B  e.  F
)  ->  -.  ( H  i^i  ( F  vH  G ) )  =  ( ( H  i^i  F )  vH  ( H  i^i  G ) ) )
64 ioran 478 . 2  |-  ( -.  ( A  e.  G  \/  B  e.  F
)  <->  ( -.  A  e.  G  /\  -.  B  e.  F ) )
65 df-ne 2421 . 2  |-  ( ( H  i^i  ( F  vH  G ) )  =/=  ( ( H  i^i  F )  vH  ( H  i^i  G ) )  <->  -.  ( H  i^i  ( F  vH  G
) )  =  ( ( H  i^i  F
)  vH  ( H  i^i  G ) ) )
6663, 64, 653imtr4i 259 1  |-  ( -.  ( A  e.  G  \/  B  e.  F
)  ->  ( H  i^i  ( F  vH  G
) )  =/=  (
( H  i^i  F
)  vH  ( H  i^i  G ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2419    i^i cin 3093   {csn 3581   ` cfv 4638  (class class class)co 5757   ~Hchil 21424    +h cva 21425   0hc0v 21429   SHcsh 21433   CHcch 21434    +H cph 21436   spancspn 21437    vH chj 21438   0Hc0h 21440
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cc 7994  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-addf 8749  ax-mulf 8750  ax-hilex 21504  ax-hfvadd 21505  ax-hvcom 21506  ax-hvass 21507  ax-hv0cl 21508  ax-hvaddid 21509  ax-hfvmul 21510  ax-hvmulid 21511  ax-hvmulass 21512  ax-hvdistr1 21513  ax-hvdistr2 21514  ax-hvmul0 21515  ax-hfi 21583  ax-his1 21586  ax-his2 21587  ax-his3 21588  ax-his4 21589  ax-hcompl 21706
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-of 5977  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-2o 6413  df-oadd 6416  df-omul 6417  df-er 6593  df-map 6707  df-pm 6708  df-ixp 6751  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-fi 7098  df-sup 7127  df-oi 7158  df-card 7505  df-acn 7508  df-cda 7727  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-7 9742  df-8 9743  df-9 9744  df-10 9745  df-n0 9898  df-z 9957  df-dec 10057  df-uz 10163  df-q 10249  df-rp 10287  df-xneg 10384  df-xadd 10385  df-xmul 10386  df-ioo 10591  df-ico 10593  df-icc 10594  df-fz 10714  df-fzo 10802  df-fl 10856  df-seq 10978  df-exp 11036  df-hash 11269  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-clim 11892  df-rlim 11893  df-sum 12089  df-struct 13077  df-ndx 13078  df-slot 13079  df-base 13080  df-sets 13081  df-ress 13082  df-plusg 13148  df-mulr 13149  df-starv 13150  df-sca 13151  df-vsca 13152  df-tset 13154  df-ple 13155  df-ds 13157  df-hom 13159  df-cco 13160  df-rest 13254  df-topn 13255  df-topgen 13271  df-pt 13272  df-prds 13275  df-xrs 13330  df-0g 13331  df-gsum 13332  df-qtop 13337  df-imas 13338  df-xps 13340  df-mre 13415  df-mrc 13416  df-acs 13418  df-mnd 14294  df-submnd 14343  df-mulg 14419  df-cntz 14720  df-cmn 15018  df-xmet 16300  df-met 16301  df-bl 16302  df-mopn 16303  df-cnfld 16305  df-top 16563  df-bases 16565  df-topon 16566  df-topsp 16567  df-cld 16683  df-ntr 16684  df-cls 16685  df-nei 16762  df-cn 16884  df-cnp 16885  df-lm 16886  df-haus 16970  df-tx 17184  df-hmeo 17373  df-fbas 17447  df-fg 17448  df-fil 17468  df-fm 17560  df-flim 17561  df-flf 17562  df-xms 17812  df-ms 17813  df-tms 17814  df-cfil 18608  df-cau 18609  df-cmet 18610  df-grpo 20783  df-gid 20784  df-ginv 20785  df-gdiv 20786  df-ablo 20874  df-subgo 20894  df-vc 21027  df-nv 21073  df-va 21076  df-ba 21077  df-sm 21078  df-0v 21079  df-vs 21080  df-nmcv 21081  df-ims 21082  df-dip 21199  df-ssp 21223  df-ph 21316  df-cbn 21367  df-hnorm 21473  df-hba 21474  df-hvsub 21476  df-hlim 21477  df-hcau 21478  df-sh 21711  df-ch 21726  df-oc 21756  df-ch0 21757  df-shs 21812  df-span 21813  df-chj 21814
  Copyright terms: Public domain W3C validator