HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm-ii-i Unicode version

Theorem norm-ii-i 21709
Description: Triangle inequality for norms. Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
norm-ii.1  |-  A  e. 
~H
norm-ii.2  |-  B  e. 
~H
Assertion
Ref Expression
norm-ii-i  |-  ( normh `  ( A  +h  B
) )  <_  (
( normh `  A )  +  ( normh `  B
) )

Proof of Theorem norm-ii-i
StepHypRef Expression
1 1re 8833 . . . . . . . . . . 11  |-  1  e.  RR
2 ax-1cn 8791 . . . . . . . . . . . 12  |-  1  e.  CC
32cjrebi 11654 . . . . . . . . . . 11  |-  ( 1  e.  RR  <->  ( * `  1 )  =  1 )
41, 3mpbi 201 . . . . . . . . . 10  |-  ( * `
 1 )  =  1
54oveq1i 5830 . . . . . . . . 9  |-  ( ( * `  1 )  x.  ( B  .ih  A ) )  =  ( 1  x.  ( B 
.ih  A ) )
6 norm-ii.2 . . . . . . . . . . 11  |-  B  e. 
~H
7 norm-ii.1 . . . . . . . . . . 11  |-  A  e. 
~H
86, 7hicli 21653 . . . . . . . . . 10  |-  ( B 
.ih  A )  e.  CC
98mulid2i 8836 . . . . . . . . 9  |-  ( 1  x.  ( B  .ih  A ) )  =  ( B  .ih  A )
105, 9eqtri 2305 . . . . . . . 8  |-  ( ( * `  1 )  x.  ( B  .ih  A ) )  =  ( B  .ih  A )
117, 6hicli 21653 . . . . . . . . 9  |-  ( A 
.ih  B )  e.  CC
1211mulid2i 8836 . . . . . . . 8  |-  ( 1  x.  ( A  .ih  B ) )  =  ( A  .ih  B )
1310, 12oveq12i 5832 . . . . . . 7  |-  ( ( ( * `  1
)  x.  ( B 
.ih  A ) )  +  ( 1  x.  ( A  .ih  B
) ) )  =  ( ( B  .ih  A )  +  ( A 
.ih  B ) )
14 abs1 11777 . . . . . . . 8  |-  ( abs `  1 )  =  1
152, 6, 7, 14normlem7 21688 . . . . . . 7  |-  ( ( ( * `  1
)  x.  ( B 
.ih  A ) )  +  ( 1  x.  ( A  .ih  B
) ) )  <_ 
( 2  x.  (
( sqr `  ( A  .ih  A ) )  x.  ( sqr `  ( B  .ih  B ) ) ) )
1613, 15eqbrtrri 4046 . . . . . 6  |-  ( ( B  .ih  A )  +  ( A  .ih  B ) )  <_  (
2  x.  ( ( sqr `  ( A 
.ih  A ) )  x.  ( sqr `  ( B  .ih  B ) ) ) )
17 eqid 2285 . . . . . . . . . 10  |-  -u (
( ( * ` 
1 )  x.  ( B  .ih  A ) )  +  ( 1  x.  ( A  .ih  B
) ) )  = 
-u ( ( ( * `  1 )  x.  ( B  .ih  A ) )  +  ( 1  x.  ( A 
.ih  B ) ) )
182, 6, 7, 17normlem2 21683 . . . . . . . . 9  |-  -u (
( ( * ` 
1 )  x.  ( B  .ih  A ) )  +  ( 1  x.  ( A  .ih  B
) ) )  e.  RR
192cjcli 11649 . . . . . . . . . . . 12  |-  ( * `
 1 )  e.  CC
2019, 8mulcli 8838 . . . . . . . . . . 11  |-  ( ( * `  1 )  x.  ( B  .ih  A ) )  e.  CC
212, 11mulcli 8838 . . . . . . . . . . 11  |-  ( 1  x.  ( A  .ih  B ) )  e.  CC
2220, 21addcli 8837 . . . . . . . . . 10  |-  ( ( ( * `  1
)  x.  ( B 
.ih  A ) )  +  ( 1  x.  ( A  .ih  B
) ) )  e.  CC
2322negrebi 9116 . . . . . . . . 9  |-  ( -u ( ( ( * `
 1 )  x.  ( B  .ih  A
) )  +  ( 1  x.  ( A 
.ih  B ) ) )  e.  RR  <->  ( (
( * `  1
)  x.  ( B 
.ih  A ) )  +  ( 1  x.  ( A  .ih  B
) ) )  e.  RR )
2418, 23mpbi 201 . . . . . . . 8  |-  ( ( ( * `  1
)  x.  ( B 
.ih  A ) )  +  ( 1  x.  ( A  .ih  B
) ) )  e.  RR
2513, 24eqeltrri 2356 . . . . . . 7  |-  ( ( B  .ih  A )  +  ( A  .ih  B ) )  e.  RR
26 2re 9811 . . . . . . . 8  |-  2  e.  RR
27 hiidge0 21670 . . . . . . . . . . 11  |-  ( A  e.  ~H  ->  0  <_  ( A  .ih  A
) )
287, 27ax-mp 10 . . . . . . . . . 10  |-  0  <_  ( A  .ih  A
)
29 hiidrcl 21667 . . . . . . . . . . . 12  |-  ( A  e.  ~H  ->  ( A  .ih  A )  e.  RR )
307, 29ax-mp 10 . . . . . . . . . . 11  |-  ( A 
.ih  A )  e.  RR
3130sqrcli 11850 . . . . . . . . . 10  |-  ( 0  <_  ( A  .ih  A )  ->  ( sqr `  ( A  .ih  A
) )  e.  RR )
3228, 31ax-mp 10 . . . . . . . . 9  |-  ( sqr `  ( A  .ih  A
) )  e.  RR
33 hiidge0 21670 . . . . . . . . . . 11  |-  ( B  e.  ~H  ->  0  <_  ( B  .ih  B
) )
346, 33ax-mp 10 . . . . . . . . . 10  |-  0  <_  ( B  .ih  B
)
35 hiidrcl 21667 . . . . . . . . . . . 12  |-  ( B  e.  ~H  ->  ( B  .ih  B )  e.  RR )
366, 35ax-mp 10 . . . . . . . . . . 11  |-  ( B 
.ih  B )  e.  RR
3736sqrcli 11850 . . . . . . . . . 10  |-  ( 0  <_  ( B  .ih  B )  ->  ( sqr `  ( B  .ih  B
) )  e.  RR )
3834, 37ax-mp 10 . . . . . . . . 9  |-  ( sqr `  ( B  .ih  B
) )  e.  RR
3932, 38remulcli 8847 . . . . . . . 8  |-  ( ( sqr `  ( A 
.ih  A ) )  x.  ( sqr `  ( B  .ih  B ) ) )  e.  RR
4026, 39remulcli 8847 . . . . . . 7  |-  ( 2  x.  ( ( sqr `  ( A  .ih  A
) )  x.  ( sqr `  ( B  .ih  B ) ) ) )  e.  RR
4130, 36readdcli 8846 . . . . . . 7  |-  ( ( A  .ih  A )  +  ( B  .ih  B ) )  e.  RR
4225, 40, 41leadd2i 9325 . . . . . 6  |-  ( ( ( B  .ih  A
)  +  ( A 
.ih  B ) )  <_  ( 2  x.  ( ( sqr `  ( A  .ih  A ) )  x.  ( sqr `  ( B  .ih  B ) ) ) )  <->  ( (
( A  .ih  A
)  +  ( B 
.ih  B ) )  +  ( ( B 
.ih  A )  +  ( A  .ih  B
) ) )  <_ 
( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( 2  x.  ( ( sqr `  ( A 
.ih  A ) )  x.  ( sqr `  ( B  .ih  B ) ) ) ) ) )
4316, 42mpbi 201 . . . . 5  |-  ( ( ( A  .ih  A
)  +  ( B 
.ih  B ) )  +  ( ( B 
.ih  A )  +  ( A  .ih  B
) ) )  <_ 
( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( 2  x.  ( ( sqr `  ( A 
.ih  A ) )  x.  ( sqr `  ( B  .ih  B ) ) ) ) )
447, 6, 7, 6normlem8 21689 . . . . . 6  |-  ( ( A  +h  B ) 
.ih  ( A  +h  B ) )  =  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( ( A  .ih  B
)  +  ( B 
.ih  A ) ) )
4511, 8addcomi 8999 . . . . . . 7  |-  ( ( A  .ih  B )  +  ( B  .ih  A ) )  =  ( ( B  .ih  A
)  +  ( A 
.ih  B ) )
4645oveq2i 5831 . . . . . 6  |-  ( ( ( A  .ih  A
)  +  ( B 
.ih  B ) )  +  ( ( A 
.ih  B )  +  ( B  .ih  A
) ) )  =  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( ( B  .ih  A
)  +  ( A 
.ih  B ) ) )
4744, 46eqtri 2305 . . . . 5  |-  ( ( A  +h  B ) 
.ih  ( A  +h  B ) )  =  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( ( B  .ih  A
)  +  ( A 
.ih  B ) ) )
4832recni 8845 . . . . . . 7  |-  ( sqr `  ( A  .ih  A
) )  e.  CC
4938recni 8845 . . . . . . 7  |-  ( sqr `  ( B  .ih  B
) )  e.  CC
5048, 49binom2i 11207 . . . . . 6  |-  ( ( ( sqr `  ( A  .ih  A ) )  +  ( sqr `  ( B  .ih  B ) ) ) ^ 2 )  =  ( ( ( ( sqr `  ( A  .ih  A ) ) ^ 2 )  +  ( 2  x.  (
( sqr `  ( A  .ih  A ) )  x.  ( sqr `  ( B  .ih  B ) ) ) ) )  +  ( ( sqr `  ( B  .ih  B ) ) ^ 2 ) )
5148sqcli 11179 . . . . . . 7  |-  ( ( sqr `  ( A 
.ih  A ) ) ^ 2 )  e.  CC
52 2cn 9812 . . . . . . . 8  |-  2  e.  CC
5348, 49mulcli 8838 . . . . . . . 8  |-  ( ( sqr `  ( A 
.ih  A ) )  x.  ( sqr `  ( B  .ih  B ) ) )  e.  CC
5452, 53mulcli 8838 . . . . . . 7  |-  ( 2  x.  ( ( sqr `  ( A  .ih  A
) )  x.  ( sqr `  ( B  .ih  B ) ) ) )  e.  CC
5549sqcli 11179 . . . . . . 7  |-  ( ( sqr `  ( B 
.ih  B ) ) ^ 2 )  e.  CC
5651, 54, 55add32i 9026 . . . . . 6  |-  ( ( ( ( sqr `  ( A  .ih  A ) ) ^ 2 )  +  ( 2  x.  (
( sqr `  ( A  .ih  A ) )  x.  ( sqr `  ( B  .ih  B ) ) ) ) )  +  ( ( sqr `  ( B  .ih  B ) ) ^ 2 ) )  =  ( ( ( ( sqr `  ( A  .ih  A ) ) ^ 2 )  +  ( ( sqr `  ( B  .ih  B ) ) ^ 2 ) )  +  ( 2  x.  ( ( sqr `  ( A  .ih  A ) )  x.  ( sqr `  ( B  .ih  B ) ) ) ) )
5730sqsqri 11854 . . . . . . . . 9  |-  ( 0  <_  ( A  .ih  A )  ->  ( ( sqr `  ( A  .ih  A ) ) ^ 2 )  =  ( A 
.ih  A ) )
5828, 57ax-mp 10 . . . . . . . 8  |-  ( ( sqr `  ( A 
.ih  A ) ) ^ 2 )  =  ( A  .ih  A
)
5936sqsqri 11854 . . . . . . . . 9  |-  ( 0  <_  ( B  .ih  B )  ->  ( ( sqr `  ( B  .ih  B ) ) ^ 2 )  =  ( B 
.ih  B ) )
6034, 59ax-mp 10 . . . . . . . 8  |-  ( ( sqr `  ( B 
.ih  B ) ) ^ 2 )  =  ( B  .ih  B
)
6158, 60oveq12i 5832 . . . . . . 7  |-  ( ( ( sqr `  ( A  .ih  A ) ) ^ 2 )  +  ( ( sqr `  ( B  .ih  B ) ) ^ 2 ) )  =  ( ( A 
.ih  A )  +  ( B  .ih  B
) )
6261oveq1i 5830 . . . . . 6  |-  ( ( ( ( sqr `  ( A  .ih  A ) ) ^ 2 )  +  ( ( sqr `  ( B  .ih  B ) ) ^ 2 ) )  +  ( 2  x.  ( ( sqr `  ( A  .ih  A ) )  x.  ( sqr `  ( B  .ih  B ) ) ) ) )  =  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( 2  x.  ( ( sqr `  ( A 
.ih  A ) )  x.  ( sqr `  ( B  .ih  B ) ) ) ) )
6350, 56, 623eqtri 2309 . . . . 5  |-  ( ( ( sqr `  ( A  .ih  A ) )  +  ( sqr `  ( B  .ih  B ) ) ) ^ 2 )  =  ( ( ( A  .ih  A )  +  ( B  .ih  B ) )  +  ( 2  x.  ( ( sqr `  ( A 
.ih  A ) )  x.  ( sqr `  ( B  .ih  B ) ) ) ) )
6443, 47, 633brtr4i 4053 . . . 4  |-  ( ( A  +h  B ) 
.ih  ( A  +h  B ) )  <_ 
( ( ( sqr `  ( A  .ih  A
) )  +  ( sqr `  ( B 
.ih  B ) ) ) ^ 2 )
657, 6hvaddcli 21591 . . . . . 6  |-  ( A  +h  B )  e. 
~H
66 hiidge0 21670 . . . . . 6  |-  ( ( A  +h  B )  e.  ~H  ->  0  <_  ( ( A  +h  B )  .ih  ( A  +h  B ) ) )
6765, 66ax-mp 10 . . . . 5  |-  0  <_  ( ( A  +h  B )  .ih  ( A  +h  B ) )
6832, 38readdcli 8846 . . . . . 6  |-  ( ( sqr `  ( A 
.ih  A ) )  +  ( sqr `  ( B  .ih  B ) ) )  e.  RR
6968sqge0i 11186 . . . . 5  |-  0  <_  ( ( ( sqr `  ( A  .ih  A
) )  +  ( sqr `  ( B 
.ih  B ) ) ) ^ 2 )
70 hiidrcl 21667 . . . . . . 7  |-  ( ( A  +h  B )  e.  ~H  ->  (
( A  +h  B
)  .ih  ( A  +h  B ) )  e.  RR )
7165, 70ax-mp 10 . . . . . 6  |-  ( ( A  +h  B ) 
.ih  ( A  +h  B ) )  e.  RR
7268resqcli 11184 . . . . . 6  |-  ( ( ( sqr `  ( A  .ih  A ) )  +  ( sqr `  ( B  .ih  B ) ) ) ^ 2 )  e.  RR
7371, 72sqrlei 11867 . . . . 5  |-  ( ( 0  <_  ( ( A  +h  B )  .ih  ( A  +h  B
) )  /\  0  <_  ( ( ( sqr `  ( A  .ih  A
) )  +  ( sqr `  ( B 
.ih  B ) ) ) ^ 2 ) )  ->  ( (
( A  +h  B
)  .ih  ( A  +h  B ) )  <_ 
( ( ( sqr `  ( A  .ih  A
) )  +  ( sqr `  ( B 
.ih  B ) ) ) ^ 2 )  <-> 
( sqr `  (
( A  +h  B
)  .ih  ( A  +h  B ) ) )  <_  ( sqr `  (
( ( sqr `  ( A  .ih  A ) )  +  ( sqr `  ( B  .ih  B ) ) ) ^ 2 ) ) ) )
7467, 69, 73mp2an 655 . . . 4  |-  ( ( ( A  +h  B
)  .ih  ( A  +h  B ) )  <_ 
( ( ( sqr `  ( A  .ih  A
) )  +  ( sqr `  ( B 
.ih  B ) ) ) ^ 2 )  <-> 
( sqr `  (
( A  +h  B
)  .ih  ( A  +h  B ) ) )  <_  ( sqr `  (
( ( sqr `  ( A  .ih  A ) )  +  ( sqr `  ( B  .ih  B ) ) ) ^ 2 ) ) )
7564, 74mpbi 201 . . 3  |-  ( sqr `  ( ( A  +h  B )  .ih  ( A  +h  B ) ) )  <_  ( sqr `  ( ( ( sqr `  ( A  .ih  A
) )  +  ( sqr `  ( B 
.ih  B ) ) ) ^ 2 ) )
7630sqrge0i 11855 . . . . . 6  |-  ( 0  <_  ( A  .ih  A )  ->  0  <_  ( sqr `  ( A 
.ih  A ) ) )
7728, 76ax-mp 10 . . . . 5  |-  0  <_  ( sqr `  ( A  .ih  A ) )
7836sqrge0i 11855 . . . . . 6  |-  ( 0  <_  ( B  .ih  B )  ->  0  <_  ( sqr `  ( B 
.ih  B ) ) )
7934, 78ax-mp 10 . . . . 5  |-  0  <_  ( sqr `  ( B  .ih  B ) )
8032, 38addge0i 9309 . . . . 5  |-  ( ( 0  <_  ( sqr `  ( A  .ih  A
) )  /\  0  <_  ( sqr `  ( B  .ih  B ) ) )  ->  0  <_  ( ( sqr `  ( A  .ih  A ) )  +  ( sqr `  ( B  .ih  B ) ) ) )
8177, 79, 80mp2an 655 . . . 4  |-  0  <_  ( ( sqr `  ( A  .ih  A ) )  +  ( sqr `  ( B  .ih  B ) ) )
8268sqrsqi 11853 . . . 4  |-  ( 0  <_  ( ( sqr `  ( A  .ih  A
) )  +  ( sqr `  ( B 
.ih  B ) ) )  ->  ( sqr `  ( ( ( sqr `  ( A  .ih  A
) )  +  ( sqr `  ( B 
.ih  B ) ) ) ^ 2 ) )  =  ( ( sqr `  ( A 
.ih  A ) )  +  ( sqr `  ( B  .ih  B ) ) ) )
8381, 82ax-mp 10 . . 3  |-  ( sqr `  ( ( ( sqr `  ( A  .ih  A
) )  +  ( sqr `  ( B 
.ih  B ) ) ) ^ 2 ) )  =  ( ( sqr `  ( A 
.ih  A ) )  +  ( sqr `  ( B  .ih  B ) ) )
8475, 83breqtri 4048 . 2  |-  ( sqr `  ( ( A  +h  B )  .ih  ( A  +h  B ) ) )  <_  ( ( sqr `  ( A  .ih  A ) )  +  ( sqr `  ( B 
.ih  B ) ) )
85 normval 21696 . . 3  |-  ( ( A  +h  B )  e.  ~H  ->  ( normh `  ( A  +h  B ) )  =  ( sqr `  (
( A  +h  B
)  .ih  ( A  +h  B ) ) ) )
8665, 85ax-mp 10 . 2  |-  ( normh `  ( A  +h  B
) )  =  ( sqr `  ( ( A  +h  B ) 
.ih  ( A  +h  B ) ) )
87 normval 21696 . . . 4  |-  ( A  e.  ~H  ->  ( normh `  A )  =  ( sqr `  ( A  .ih  A ) ) )
887, 87ax-mp 10 . . 3  |-  ( normh `  A )  =  ( sqr `  ( A 
.ih  A ) )
89 normval 21696 . . . 4  |-  ( B  e.  ~H  ->  ( normh `  B )  =  ( sqr `  ( B  .ih  B ) ) )
906, 89ax-mp 10 . . 3  |-  ( normh `  B )  =  ( sqr `  ( B 
.ih  B ) )
9188, 90oveq12i 5832 . 2  |-  ( (
normh `  A )  +  ( normh `  B )
)  =  ( ( sqr `  ( A 
.ih  A ) )  +  ( sqr `  ( B  .ih  B ) ) )
9284, 86, 913brtr4i 4053 1  |-  ( normh `  ( A  +h  B
) )  <_  (
( normh `  A )  +  ( normh `  B
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    = wceq 1624    e. wcel 1685   class class class wbr 4025   ` cfv 5222  (class class class)co 5820   RRcr 8732   0cc0 8733   1c1 8734    + caddc 8736    x. cmul 8738    <_ cle 8864   -ucneg 9034   2c2 9791   ^cexp 11099   *ccj 11576   sqrcsqr 11713   ~Hchil 21492    +h cva 21493    .ih csp 21495   normhcno 21496
This theorem is referenced by:  norm-ii  21710  norm3difi  21719
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811  ax-hfvadd 21573  ax-hv0cl 21576  ax-hfvmul 21578  ax-hvmulass 21580  ax-hvmul0 21583  ax-hfi 21651  ax-his1 21654  ax-his2 21655  ax-his3 21656  ax-his4 21657
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-sup 7190  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-n0 9962  df-z 10021  df-uz 10227  df-rp 10351  df-seq 11042  df-exp 11100  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-hnorm 21541  df-hvsub 21544
  Copyright terms: Public domain W3C validator