HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm3difi Unicode version

Theorem norm3difi 21719
Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
norm3dif.1  |-  A  e. 
~H
norm3dif.2  |-  B  e. 
~H
norm3dif.3  |-  C  e. 
~H
Assertion
Ref Expression
norm3difi  |-  ( normh `  ( A  -h  B
) )  <_  (
( normh `  ( A  -h  C ) )  +  ( normh `  ( C  -h  B ) ) )

Proof of Theorem norm3difi
StepHypRef Expression
1 norm3dif.1 . . . . 5  |-  A  e. 
~H
2 norm3dif.2 . . . . 5  |-  B  e. 
~H
31, 2hvsubvali 21593 . . . 4  |-  ( A  -h  B )  =  ( A  +h  ( -u 1  .h  B ) )
4 norm3dif.3 . . . . . . 7  |-  C  e. 
~H
51, 4hvsubvali 21593 . . . . . 6  |-  ( A  -h  C )  =  ( A  +h  ( -u 1  .h  C ) )
64, 2hvsubvali 21593 . . . . . 6  |-  ( C  -h  B )  =  ( C  +h  ( -u 1  .h  B ) )
75, 6oveq12i 5832 . . . . 5  |-  ( ( A  -h  C )  +h  ( C  -h  B ) )  =  ( ( A  +h  ( -u 1  .h  C
) )  +h  ( C  +h  ( -u 1  .h  B ) ) )
8 neg1cn 9809 . . . . . . 7  |-  -u 1  e.  CC
98, 4hvmulcli 21587 . . . . . 6  |-  ( -u
1  .h  C )  e.  ~H
108, 2hvmulcli 21587 . . . . . . 7  |-  ( -u
1  .h  B )  e.  ~H
114, 10hvaddcli 21591 . . . . . 6  |-  ( C  +h  ( -u 1  .h  B ) )  e. 
~H
121, 9, 11hvassi 21625 . . . . 5  |-  ( ( A  +h  ( -u
1  .h  C ) )  +h  ( C  +h  ( -u 1  .h  B ) ) )  =  ( A  +h  ( ( -u 1  .h  C )  +h  ( C  +h  ( -u 1  .h  B ) ) ) )
139, 4, 10hvassi 21625 . . . . . . 7  |-  ( ( ( -u 1  .h  C )  +h  C
)  +h  ( -u
1  .h  B ) )  =  ( (
-u 1  .h  C
)  +h  ( C  +h  ( -u 1  .h  B ) ) )
149, 4hvcomi 21592 . . . . . . . . . 10  |-  ( (
-u 1  .h  C
)  +h  C )  =  ( C  +h  ( -u 1  .h  C
) )
154, 4hvsubvali 21593 . . . . . . . . . 10  |-  ( C  -h  C )  =  ( C  +h  ( -u 1  .h  C ) )
16 hvsubid 21598 . . . . . . . . . . 11  |-  ( C  e.  ~H  ->  ( C  -h  C )  =  0h )
174, 16ax-mp 10 . . . . . . . . . 10  |-  ( C  -h  C )  =  0h
1814, 15, 173eqtr2i 2311 . . . . . . . . 9  |-  ( (
-u 1  .h  C
)  +h  C )  =  0h
1918oveq1i 5830 . . . . . . . 8  |-  ( ( ( -u 1  .h  C )  +h  C
)  +h  ( -u
1  .h  B ) )  =  ( 0h 
+h  ( -u 1  .h  B ) )
20 ax-hv0cl 21576 . . . . . . . . 9  |-  0h  e.  ~H
2120, 10hvcomi 21592 . . . . . . . 8  |-  ( 0h 
+h  ( -u 1  .h  B ) )  =  ( ( -u 1  .h  B )  +h  0h )
22 ax-hvaddid 21577 . . . . . . . . 9  |-  ( (
-u 1  .h  B
)  e.  ~H  ->  ( ( -u 1  .h  B )  +h  0h )  =  ( -u 1  .h  B ) )
2310, 22ax-mp 10 . . . . . . . 8  |-  ( (
-u 1  .h  B
)  +h  0h )  =  ( -u 1  .h  B )
2419, 21, 233eqtri 2309 . . . . . . 7  |-  ( ( ( -u 1  .h  C )  +h  C
)  +h  ( -u
1  .h  B ) )  =  ( -u
1  .h  B )
2513, 24eqtr3i 2307 . . . . . 6  |-  ( (
-u 1  .h  C
)  +h  ( C  +h  ( -u 1  .h  B ) ) )  =  ( -u 1  .h  B )
2625oveq2i 5831 . . . . 5  |-  ( A  +h  ( ( -u
1  .h  C )  +h  ( C  +h  ( -u 1  .h  B
) ) ) )  =  ( A  +h  ( -u 1  .h  B
) )
277, 12, 263eqtri 2309 . . . 4  |-  ( ( A  -h  C )  +h  ( C  -h  B ) )  =  ( A  +h  ( -u 1  .h  B ) )
283, 27eqtr4i 2308 . . 3  |-  ( A  -h  B )  =  ( ( A  -h  C )  +h  ( C  -h  B ) )
2928fveq2i 5489 . 2  |-  ( normh `  ( A  -h  B
) )  =  (
normh `  ( ( A  -h  C )  +h  ( C  -h  B
) ) )
301, 4hvsubcli 21594 . . 3  |-  ( A  -h  C )  e. 
~H
314, 2hvsubcli 21594 . . 3  |-  ( C  -h  B )  e. 
~H
3230, 31norm-ii-i 21709 . 2  |-  ( normh `  ( ( A  -h  C )  +h  ( C  -h  B ) ) )  <_  ( ( normh `  ( A  -h  C ) )  +  ( normh `  ( C  -h  B ) ) )
3329, 32eqbrtri 4044 1  |-  ( normh `  ( A  -h  B
) )  <_  (
( normh `  ( A  -h  C ) )  +  ( normh `  ( C  -h  B ) ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1624    e. wcel 1685   class class class wbr 4025   ` cfv 5222  (class class class)co 5820   1c1 8734    + caddc 8736    <_ cle 8864   -ucneg 9034   ~Hchil 21492    +h cva 21493    .h csm 21494   normhcno 21496   0hc0v 21497    -h cmv 21498
This theorem is referenced by:  norm3adifii  21720  norm3lem  21721  norm3dif  21722
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811  ax-hfvadd 21573  ax-hvcom 21574  ax-hvass 21575  ax-hv0cl 21576  ax-hvaddid 21577  ax-hfvmul 21578  ax-hvmulid 21579  ax-hvmulass 21580  ax-hvdistr2 21582  ax-hvmul0 21583  ax-hfi 21651  ax-his1 21654  ax-his2 21655  ax-his3 21656  ax-his4 21657
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-sup 7190  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-n0 9962  df-z 10021  df-uz 10227  df-rp 10351  df-seq 11042  df-exp 11100  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-hnorm 21541  df-hvsub 21544
  Copyright terms: Public domain W3C validator