HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem0 Structured version   Unicode version

Theorem normlem0 22603
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 7-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1  |-  S  e.  CC
normlem1.2  |-  F  e. 
~H
normlem1.3  |-  G  e. 
~H
Assertion
Ref Expression
normlem0  |-  ( ( F  -h  ( S  .h  G ) ) 
.ih  ( F  -h  ( S  .h  G
) ) )  =  ( ( ( F 
.ih  F )  +  ( -u ( * `
 S )  x.  ( F  .ih  G
) ) )  +  ( ( -u S  x.  ( G  .ih  F
) )  +  ( ( S  x.  (
* `  S )
)  x.  ( G 
.ih  G ) ) ) )

Proof of Theorem normlem0
StepHypRef Expression
1 normlem1.2 . . . . 5  |-  F  e. 
~H
2 normlem1.1 . . . . . 6  |-  S  e.  CC
3 normlem1.3 . . . . . 6  |-  G  e. 
~H
42, 3hvmulcli 22509 . . . . 5  |-  ( S  .h  G )  e. 
~H
51, 4hvsubvali 22515 . . . 4  |-  ( F  -h  ( S  .h  G ) )  =  ( F  +h  ( -u 1  .h  ( S  .h  G ) ) )
62mulm1i 9470 . . . . . . 7  |-  ( -u
1  x.  S )  =  -u S
76oveq1i 6083 . . . . . 6  |-  ( (
-u 1  x.  S
)  .h  G )  =  ( -u S  .h  G )
8 neg1cn 10059 . . . . . . 7  |-  -u 1  e.  CC
98, 2, 3hvmulassi 22540 . . . . . 6  |-  ( (
-u 1  x.  S
)  .h  G )  =  ( -u 1  .h  ( S  .h  G
) )
107, 9eqtr3i 2457 . . . . 5  |-  ( -u S  .h  G )  =  ( -u 1  .h  ( S  .h  G
) )
1110oveq2i 6084 . . . 4  |-  ( F  +h  ( -u S  .h  G ) )  =  ( F  +h  ( -u 1  .h  ( S  .h  G ) ) )
125, 11eqtr4i 2458 . . 3  |-  ( F  -h  ( S  .h  G ) )  =  ( F  +h  ( -u S  .h  G ) )
1312, 12oveq12i 6085 . 2  |-  ( ( F  -h  ( S  .h  G ) ) 
.ih  ( F  -h  ( S  .h  G
) ) )  =  ( ( F  +h  ( -u S  .h  G
) )  .ih  ( F  +h  ( -u S  .h  G ) ) )
142negcli 9360 . . . 4  |-  -u S  e.  CC
1514, 3hvmulcli 22509 . . 3  |-  ( -u S  .h  G )  e.  ~H
161, 15hvaddcli 22513 . . 3  |-  ( F  +h  ( -u S  .h  G ) )  e. 
~H
17 ax-his2 22577 . . 3  |-  ( ( F  e.  ~H  /\  ( -u S  .h  G
)  e.  ~H  /\  ( F  +h  ( -u S  .h  G ) )  e.  ~H )  ->  ( ( F  +h  ( -u S  .h  G
) )  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( ( F 
.ih  ( F  +h  ( -u S  .h  G
) ) )  +  ( ( -u S  .h  G )  .ih  ( F  +h  ( -u S  .h  G ) ) ) ) )
181, 15, 16, 17mp3an 1279 . 2  |-  ( ( F  +h  ( -u S  .h  G )
)  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( ( F 
.ih  ( F  +h  ( -u S  .h  G
) ) )  +  ( ( -u S  .h  G )  .ih  ( F  +h  ( -u S  .h  G ) ) ) )
19 his7 22584 . . . . 5  |-  ( ( F  e.  ~H  /\  F  e.  ~H  /\  ( -u S  .h  G )  e.  ~H )  -> 
( F  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( ( F 
.ih  F )  +  ( F  .ih  ( -u S  .h  G ) ) ) )
201, 1, 15, 19mp3an 1279 . . . 4  |-  ( F 
.ih  ( F  +h  ( -u S  .h  G
) ) )  =  ( ( F  .ih  F )  +  ( F 
.ih  ( -u S  .h  G ) ) )
21 his5 22580 . . . . . . 7  |-  ( (
-u S  e.  CC  /\  F  e.  ~H  /\  G  e.  ~H )  ->  ( F  .ih  ( -u S  .h  G ) )  =  ( ( * `  -u S
)  x.  ( F 
.ih  G ) ) )
2214, 1, 3, 21mp3an 1279 . . . . . 6  |-  ( F 
.ih  ( -u S  .h  G ) )  =  ( ( * `  -u S )  x.  ( F  .ih  G ) )
232cjnegi 11979 . . . . . . 7  |-  ( * `
 -u S )  = 
-u ( * `  S )
2423oveq1i 6083 . . . . . 6  |-  ( ( * `  -u S
)  x.  ( F 
.ih  G ) )  =  ( -u (
* `  S )  x.  ( F  .ih  G
) )
2522, 24eqtri 2455 . . . . 5  |-  ( F 
.ih  ( -u S  .h  G ) )  =  ( -u ( * `
 S )  x.  ( F  .ih  G
) )
2625oveq2i 6084 . . . 4  |-  ( ( F  .ih  F )  +  ( F  .ih  ( -u S  .h  G
) ) )  =  ( ( F  .ih  F )  +  ( -u ( * `  S
)  x.  ( F 
.ih  G ) ) )
2720, 26eqtri 2455 . . 3  |-  ( F 
.ih  ( F  +h  ( -u S  .h  G
) ) )  =  ( ( F  .ih  F )  +  ( -u ( * `  S
)  x.  ( F 
.ih  G ) ) )
28 ax-his3 22578 . . . . 5  |-  ( (
-u S  e.  CC  /\  G  e.  ~H  /\  ( F  +h  ( -u S  .h  G ) )  e.  ~H )  ->  ( ( -u S  .h  G )  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( -u S  x.  ( G  .ih  ( F  +h  ( -u S  .h  G ) ) ) ) )
2914, 3, 16, 28mp3an 1279 . . . 4  |-  ( (
-u S  .h  G
)  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( -u S  x.  ( G  .ih  ( F  +h  ( -u S  .h  G ) ) ) )
30 his7 22584 . . . . . . 7  |-  ( ( G  e.  ~H  /\  F  e.  ~H  /\  ( -u S  .h  G )  e.  ~H )  -> 
( G  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( ( G 
.ih  F )  +  ( G  .ih  ( -u S  .h  G ) ) ) )
313, 1, 15, 30mp3an 1279 . . . . . 6  |-  ( G 
.ih  ( F  +h  ( -u S  .h  G
) ) )  =  ( ( G  .ih  F )  +  ( G 
.ih  ( -u S  .h  G ) ) )
32 his5 22580 . . . . . . . 8  |-  ( (
-u S  e.  CC  /\  G  e.  ~H  /\  G  e.  ~H )  ->  ( G  .ih  ( -u S  .h  G ) )  =  ( ( * `  -u S
)  x.  ( G 
.ih  G ) ) )
3314, 3, 3, 32mp3an 1279 . . . . . . 7  |-  ( G 
.ih  ( -u S  .h  G ) )  =  ( ( * `  -u S )  x.  ( G  .ih  G ) )
3433oveq2i 6084 . . . . . 6  |-  ( ( G  .ih  F )  +  ( G  .ih  ( -u S  .h  G
) ) )  =  ( ( G  .ih  F )  +  ( ( * `  -u S
)  x.  ( G 
.ih  G ) ) )
3531, 34eqtri 2455 . . . . 5  |-  ( G 
.ih  ( F  +h  ( -u S  .h  G
) ) )  =  ( ( G  .ih  F )  +  ( ( * `  -u S
)  x.  ( G 
.ih  G ) ) )
3635oveq2i 6084 . . . 4  |-  ( -u S  x.  ( G  .ih  ( F  +h  ( -u S  .h  G ) ) ) )  =  ( -u S  x.  ( ( G  .ih  F )  +  ( ( * `  -u S
)  x.  ( G 
.ih  G ) ) ) )
373, 1hicli 22575 . . . . . 6  |-  ( G 
.ih  F )  e.  CC
3814cjcli 11966 . . . . . . 7  |-  ( * `
 -u S )  e.  CC
393, 3hicli 22575 . . . . . . 7  |-  ( G 
.ih  G )  e.  CC
4038, 39mulcli 9087 . . . . . 6  |-  ( ( * `  -u S
)  x.  ( G 
.ih  G ) )  e.  CC
4114, 37, 40adddii 9092 . . . . 5  |-  ( -u S  x.  ( ( G  .ih  F )  +  ( ( * `  -u S )  x.  ( G  .ih  G ) ) ) )  =  ( ( -u S  x.  ( G  .ih  F ) )  +  ( -u S  x.  ( (
* `  -u S )  x.  ( G  .ih  G ) ) ) )
4214, 38, 39mulassi 9091 . . . . . . 7  |-  ( (
-u S  x.  (
* `  -u S ) )  x.  ( G 
.ih  G ) )  =  ( -u S  x.  ( ( * `  -u S )  x.  ( G  .ih  G ) ) )
4323oveq2i 6084 . . . . . . . . 9  |-  ( -u S  x.  ( * `  -u S ) )  =  ( -u S  x.  -u ( * `  S ) )
442cjcli 11966 . . . . . . . . . 10  |-  ( * `
 S )  e.  CC
452, 44mul2negi 9473 . . . . . . . . 9  |-  ( -u S  x.  -u ( * `
 S ) )  =  ( S  x.  ( * `  S
) )
4643, 45eqtri 2455 . . . . . . . 8  |-  ( -u S  x.  ( * `  -u S ) )  =  ( S  x.  ( * `  S
) )
4746oveq1i 6083 . . . . . . 7  |-  ( (
-u S  x.  (
* `  -u S ) )  x.  ( G 
.ih  G ) )  =  ( ( S  x.  ( * `  S ) )  x.  ( G  .ih  G
) )
4842, 47eqtr3i 2457 . . . . . 6  |-  ( -u S  x.  ( (
* `  -u S )  x.  ( G  .ih  G ) ) )  =  ( ( S  x.  ( * `  S
) )  x.  ( G  .ih  G ) )
4948oveq2i 6084 . . . . 5  |-  ( (
-u S  x.  ( G  .ih  F ) )  +  ( -u S  x.  ( ( * `  -u S )  x.  ( G  .ih  G ) ) ) )  =  ( ( -u S  x.  ( G  .ih  F ) )  +  ( ( S  x.  ( * `
 S ) )  x.  ( G  .ih  G ) ) )
5041, 49eqtri 2455 . . . 4  |-  ( -u S  x.  ( ( G  .ih  F )  +  ( ( * `  -u S )  x.  ( G  .ih  G ) ) ) )  =  ( ( -u S  x.  ( G  .ih  F ) )  +  ( ( S  x.  ( * `
 S ) )  x.  ( G  .ih  G ) ) )
5129, 36, 503eqtri 2459 . . 3  |-  ( (
-u S  .h  G
)  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( ( -u S  x.  ( G  .ih  F ) )  +  ( ( S  x.  ( * `  S
) )  x.  ( G  .ih  G ) ) )
5227, 51oveq12i 6085 . 2  |-  ( ( F  .ih  ( F  +h  ( -u S  .h  G ) ) )  +  ( ( -u S  .h  G )  .ih  ( F  +h  ( -u S  .h  G ) ) ) )  =  ( ( ( F 
.ih  F )  +  ( -u ( * `
 S )  x.  ( F  .ih  G
) ) )  +  ( ( -u S  x.  ( G  .ih  F
) )  +  ( ( S  x.  (
* `  S )
)  x.  ( G 
.ih  G ) ) ) )
5313, 18, 523eqtri 2459 1  |-  ( ( F  -h  ( S  .h  G ) ) 
.ih  ( F  -h  ( S  .h  G
) ) )  =  ( ( ( F 
.ih  F )  +  ( -u ( * `
 S )  x.  ( F  .ih  G
) ) )  +  ( ( -u S  x.  ( G  .ih  F
) )  +  ( ( S  x.  (
* `  S )
)  x.  ( G 
.ih  G ) ) ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725   ` cfv 5446  (class class class)co 6073   CCcc 8980   1c1 8983    + caddc 8985    x. cmul 8987   -ucneg 9284   *ccj 11893   ~Hchil 22414    +h cva 22415    .h csm 22416    .ih csp 22417    -h cmv 22420
This theorem is referenced by:  normlem1  22604
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-hfvadd 22495  ax-hfvmul 22500  ax-hvmulass 22502  ax-hfi 22573  ax-his1 22576  ax-his2 22577  ax-his3 22578
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-2 10050  df-cj 11896  df-re 11897  df-im 11898  df-hvsub 22466
  Copyright terms: Public domain W3C validator