HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem0 Unicode version

Theorem normlem0 21649
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 7-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1  |-  S  e.  CC
normlem1.2  |-  F  e. 
~H
normlem1.3  |-  G  e. 
~H
Assertion
Ref Expression
normlem0  |-  ( ( F  -h  ( S  .h  G ) ) 
.ih  ( F  -h  ( S  .h  G
) ) )  =  ( ( ( F 
.ih  F )  +  ( -u ( * `
 S )  x.  ( F  .ih  G
) ) )  +  ( ( -u S  x.  ( G  .ih  F
) )  +  ( ( S  x.  (
* `  S )
)  x.  ( G 
.ih  G ) ) ) )

Proof of Theorem normlem0
StepHypRef Expression
1 normlem1.2 . . . . 5  |-  F  e. 
~H
2 normlem1.1 . . . . . 6  |-  S  e.  CC
3 normlem1.3 . . . . . 6  |-  G  e. 
~H
42, 3hvmulcli 21555 . . . . 5  |-  ( S  .h  G )  e. 
~H
51, 4hvsubvali 21561 . . . 4  |-  ( F  -h  ( S  .h  G ) )  =  ( F  +h  ( -u 1  .h  ( S  .h  G ) ) )
62mulm1i 9192 . . . . . . 7  |-  ( -u
1  x.  S )  =  -u S
76oveq1i 5802 . . . . . 6  |-  ( (
-u 1  x.  S
)  .h  G )  =  ( -u S  .h  G )
8 neg1cn 9781 . . . . . . 7  |-  -u 1  e.  CC
98, 2, 3hvmulassi 21586 . . . . . 6  |-  ( (
-u 1  x.  S
)  .h  G )  =  ( -u 1  .h  ( S  .h  G
) )
107, 9eqtr3i 2280 . . . . 5  |-  ( -u S  .h  G )  =  ( -u 1  .h  ( S  .h  G
) )
1110oveq2i 5803 . . . 4  |-  ( F  +h  ( -u S  .h  G ) )  =  ( F  +h  ( -u 1  .h  ( S  .h  G ) ) )
125, 11eqtr4i 2281 . . 3  |-  ( F  -h  ( S  .h  G ) )  =  ( F  +h  ( -u S  .h  G ) )
1312, 12oveq12i 5804 . 2  |-  ( ( F  -h  ( S  .h  G ) ) 
.ih  ( F  -h  ( S  .h  G
) ) )  =  ( ( F  +h  ( -u S  .h  G
) )  .ih  ( F  +h  ( -u S  .h  G ) ) )
142negcli 9082 . . . 4  |-  -u S  e.  CC
1514, 3hvmulcli 21555 . . 3  |-  ( -u S  .h  G )  e.  ~H
161, 15hvaddcli 21559 . . 3  |-  ( F  +h  ( -u S  .h  G ) )  e. 
~H
17 ax-his2 21623 . . 3  |-  ( ( F  e.  ~H  /\  ( -u S  .h  G
)  e.  ~H  /\  ( F  +h  ( -u S  .h  G ) )  e.  ~H )  ->  ( ( F  +h  ( -u S  .h  G
) )  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( ( F 
.ih  ( F  +h  ( -u S  .h  G
) ) )  +  ( ( -u S  .h  G )  .ih  ( F  +h  ( -u S  .h  G ) ) ) ) )
181, 15, 16, 17mp3an 1282 . 2  |-  ( ( F  +h  ( -u S  .h  G )
)  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( ( F 
.ih  ( F  +h  ( -u S  .h  G
) ) )  +  ( ( -u S  .h  G )  .ih  ( F  +h  ( -u S  .h  G ) ) ) )
19 his7 21630 . . . . 5  |-  ( ( F  e.  ~H  /\  F  e.  ~H  /\  ( -u S  .h  G )  e.  ~H )  -> 
( F  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( ( F 
.ih  F )  +  ( F  .ih  ( -u S  .h  G ) ) ) )
201, 1, 15, 19mp3an 1282 . . . 4  |-  ( F 
.ih  ( F  +h  ( -u S  .h  G
) ) )  =  ( ( F  .ih  F )  +  ( F 
.ih  ( -u S  .h  G ) ) )
21 his5 21626 . . . . . . 7  |-  ( (
-u S  e.  CC  /\  F  e.  ~H  /\  G  e.  ~H )  ->  ( F  .ih  ( -u S  .h  G ) )  =  ( ( * `  -u S
)  x.  ( F 
.ih  G ) ) )
2214, 1, 3, 21mp3an 1282 . . . . . 6  |-  ( F 
.ih  ( -u S  .h  G ) )  =  ( ( * `  -u S )  x.  ( F  .ih  G ) )
232cjnegi 11633 . . . . . . 7  |-  ( * `
 -u S )  = 
-u ( * `  S )
2423oveq1i 5802 . . . . . 6  |-  ( ( * `  -u S
)  x.  ( F 
.ih  G ) )  =  ( -u (
* `  S )  x.  ( F  .ih  G
) )
2522, 24eqtri 2278 . . . . 5  |-  ( F 
.ih  ( -u S  .h  G ) )  =  ( -u ( * `
 S )  x.  ( F  .ih  G
) )
2625oveq2i 5803 . . . 4  |-  ( ( F  .ih  F )  +  ( F  .ih  ( -u S  .h  G
) ) )  =  ( ( F  .ih  F )  +  ( -u ( * `  S
)  x.  ( F 
.ih  G ) ) )
2720, 26eqtri 2278 . . 3  |-  ( F 
.ih  ( F  +h  ( -u S  .h  G
) ) )  =  ( ( F  .ih  F )  +  ( -u ( * `  S
)  x.  ( F 
.ih  G ) ) )
28 ax-his3 21624 . . . . 5  |-  ( (
-u S  e.  CC  /\  G  e.  ~H  /\  ( F  +h  ( -u S  .h  G ) )  e.  ~H )  ->  ( ( -u S  .h  G )  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( -u S  x.  ( G  .ih  ( F  +h  ( -u S  .h  G ) ) ) ) )
2914, 3, 16, 28mp3an 1282 . . . 4  |-  ( (
-u S  .h  G
)  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( -u S  x.  ( G  .ih  ( F  +h  ( -u S  .h  G ) ) ) )
30 his7 21630 . . . . . . 7  |-  ( ( G  e.  ~H  /\  F  e.  ~H  /\  ( -u S  .h  G )  e.  ~H )  -> 
( G  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( ( G 
.ih  F )  +  ( G  .ih  ( -u S  .h  G ) ) ) )
313, 1, 15, 30mp3an 1282 . . . . . 6  |-  ( G 
.ih  ( F  +h  ( -u S  .h  G
) ) )  =  ( ( G  .ih  F )  +  ( G 
.ih  ( -u S  .h  G ) ) )
32 his5 21626 . . . . . . . 8  |-  ( (
-u S  e.  CC  /\  G  e.  ~H  /\  G  e.  ~H )  ->  ( G  .ih  ( -u S  .h  G ) )  =  ( ( * `  -u S
)  x.  ( G 
.ih  G ) ) )
3314, 3, 3, 32mp3an 1282 . . . . . . 7  |-  ( G 
.ih  ( -u S  .h  G ) )  =  ( ( * `  -u S )  x.  ( G  .ih  G ) )
3433oveq2i 5803 . . . . . 6  |-  ( ( G  .ih  F )  +  ( G  .ih  ( -u S  .h  G
) ) )  =  ( ( G  .ih  F )  +  ( ( * `  -u S
)  x.  ( G 
.ih  G ) ) )
3531, 34eqtri 2278 . . . . 5  |-  ( G 
.ih  ( F  +h  ( -u S  .h  G
) ) )  =  ( ( G  .ih  F )  +  ( ( * `  -u S
)  x.  ( G 
.ih  G ) ) )
3635oveq2i 5803 . . . 4  |-  ( -u S  x.  ( G  .ih  ( F  +h  ( -u S  .h  G ) ) ) )  =  ( -u S  x.  ( ( G  .ih  F )  +  ( ( * `  -u S
)  x.  ( G 
.ih  G ) ) ) )
373, 1hicli 21621 . . . . . 6  |-  ( G 
.ih  F )  e.  CC
3814cjcli 11620 . . . . . . 7  |-  ( * `
 -u S )  e.  CC
393, 3hicli 21621 . . . . . . 7  |-  ( G 
.ih  G )  e.  CC
4038, 39mulcli 8810 . . . . . 6  |-  ( ( * `  -u S
)  x.  ( G 
.ih  G ) )  e.  CC
4114, 37, 40adddii 8815 . . . . 5  |-  ( -u S  x.  ( ( G  .ih  F )  +  ( ( * `  -u S )  x.  ( G  .ih  G ) ) ) )  =  ( ( -u S  x.  ( G  .ih  F ) )  +  ( -u S  x.  ( (
* `  -u S )  x.  ( G  .ih  G ) ) ) )
4214, 38, 39mulassi 8814 . . . . . . 7  |-  ( (
-u S  x.  (
* `  -u S ) )  x.  ( G 
.ih  G ) )  =  ( -u S  x.  ( ( * `  -u S )  x.  ( G  .ih  G ) ) )
4323oveq2i 5803 . . . . . . . . 9  |-  ( -u S  x.  ( * `  -u S ) )  =  ( -u S  x.  -u ( * `  S ) )
442cjcli 11620 . . . . . . . . . 10  |-  ( * `
 S )  e.  CC
452, 44mul2negi 9195 . . . . . . . . 9  |-  ( -u S  x.  -u ( * `
 S ) )  =  ( S  x.  ( * `  S
) )
4643, 45eqtri 2278 . . . . . . . 8  |-  ( -u S  x.  ( * `  -u S ) )  =  ( S  x.  ( * `  S
) )
4746oveq1i 5802 . . . . . . 7  |-  ( (
-u S  x.  (
* `  -u S ) )  x.  ( G 
.ih  G ) )  =  ( ( S  x.  ( * `  S ) )  x.  ( G  .ih  G
) )
4842, 47eqtr3i 2280 . . . . . 6  |-  ( -u S  x.  ( (
* `  -u S )  x.  ( G  .ih  G ) ) )  =  ( ( S  x.  ( * `  S
) )  x.  ( G  .ih  G ) )
4948oveq2i 5803 . . . . 5  |-  ( (
-u S  x.  ( G  .ih  F ) )  +  ( -u S  x.  ( ( * `  -u S )  x.  ( G  .ih  G ) ) ) )  =  ( ( -u S  x.  ( G  .ih  F ) )  +  ( ( S  x.  ( * `
 S ) )  x.  ( G  .ih  G ) ) )
5041, 49eqtri 2278 . . . 4  |-  ( -u S  x.  ( ( G  .ih  F )  +  ( ( * `  -u S )  x.  ( G  .ih  G ) ) ) )  =  ( ( -u S  x.  ( G  .ih  F ) )  +  ( ( S  x.  ( * `
 S ) )  x.  ( G  .ih  G ) ) )
5129, 36, 503eqtri 2282 . . 3  |-  ( (
-u S  .h  G
)  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( ( -u S  x.  ( G  .ih  F ) )  +  ( ( S  x.  ( * `  S
) )  x.  ( G  .ih  G ) ) )
5227, 51oveq12i 5804 . 2  |-  ( ( F  .ih  ( F  +h  ( -u S  .h  G ) ) )  +  ( ( -u S  .h  G )  .ih  ( F  +h  ( -u S  .h  G ) ) ) )  =  ( ( ( F 
.ih  F )  +  ( -u ( * `
 S )  x.  ( F  .ih  G
) ) )  +  ( ( -u S  x.  ( G  .ih  F
) )  +  ( ( S  x.  (
* `  S )
)  x.  ( G 
.ih  G ) ) ) )
5313, 18, 523eqtri 2282 1  |-  ( ( F  -h  ( S  .h  G ) ) 
.ih  ( F  -h  ( S  .h  G
) ) )  =  ( ( ( F 
.ih  F )  +  ( -u ( * `
 S )  x.  ( F  .ih  G
) ) )  +  ( ( -u S  x.  ( G  .ih  F
) )  +  ( ( S  x.  (
* `  S )
)  x.  ( G 
.ih  G ) ) ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1619    e. wcel 1621   ` cfv 4673  (class class class)co 5792   CCcc 8703   1c1 8706    + caddc 8708    x. cmul 8710   -ucneg 9006   *ccj 11547   ~Hchil 21460    +h cva 21461    .h csm 21462    .ih csp 21463    -h cmv 21466
This theorem is referenced by:  normlem1  21650
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-hfvadd 21541  ax-hfvmul 21546  ax-hvmulass 21548  ax-hfi 21619  ax-his1 21622  ax-his2 21623  ax-his3 21624
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-po 4286  df-so 4287  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-iota 6225  df-riota 6272  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-2 9772  df-cj 11550  df-re 11551  df-im 11552  df-hvsub 21512
  Copyright terms: Public domain W3C validator