HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem2 Unicode version

Theorem normlem2 21615
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 27-Jul-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1  |-  S  e.  CC
normlem1.2  |-  F  e. 
~H
normlem1.3  |-  G  e. 
~H
normlem2.4  |-  B  = 
-u ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) )
Assertion
Ref Expression
normlem2  |-  B  e.  RR

Proof of Theorem normlem2
StepHypRef Expression
1 normlem2.4 . 2  |-  B  = 
-u ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) )
2 normlem1.1 . . . . . . . . 9  |-  S  e.  CC
32cjcli 11584 . . . . . . . 8  |-  ( * `
 S )  e.  CC
4 normlem1.2 . . . . . . . . 9  |-  F  e. 
~H
5 normlem1.3 . . . . . . . . 9  |-  G  e. 
~H
64, 5hicli 21585 . . . . . . . 8  |-  ( F 
.ih  G )  e.  CC
73, 6mulcli 8775 . . . . . . 7  |-  ( ( * `  S )  x.  ( F  .ih  G ) )  e.  CC
85, 4hicli 21585 . . . . . . . 8  |-  ( G 
.ih  F )  e.  CC
92, 8mulcli 8775 . . . . . . 7  |-  ( S  x.  ( G  .ih  F ) )  e.  CC
107, 9cjaddi 11603 . . . . . 6  |-  ( * `
 ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) ) )  =  ( ( * `  (
( * `  S
)  x.  ( F 
.ih  G ) ) )  +  ( * `
 ( S  x.  ( G  .ih  F ) ) ) )
112cjcji 11586 . . . . . . . . . 10  |-  ( * `
 ( * `  S ) )  =  S
1211eqcomi 2260 . . . . . . . . 9  |-  S  =  ( * `  (
* `  S )
)
135, 4his1i 21604 . . . . . . . . 9  |-  ( G 
.ih  F )  =  ( * `  ( F  .ih  G ) )
1412, 13oveq12i 5769 . . . . . . . 8  |-  ( S  x.  ( G  .ih  F ) )  =  ( ( * `  (
* `  S )
)  x.  ( * `
 ( F  .ih  G ) ) )
153, 6cjmuli 11604 . . . . . . . 8  |-  ( * `
 ( ( * `
 S )  x.  ( F  .ih  G
) ) )  =  ( ( * `  ( * `  S
) )  x.  (
* `  ( F  .ih  G ) ) )
1614, 15eqtr4i 2279 . . . . . . 7  |-  ( S  x.  ( G  .ih  F ) )  =  ( * `  ( ( * `  S )  x.  ( F  .ih  G ) ) )
174, 5his1i 21604 . . . . . . . . 9  |-  ( F 
.ih  G )  =  ( * `  ( G  .ih  F ) )
1817oveq2i 5768 . . . . . . . 8  |-  ( ( * `  S )  x.  ( F  .ih  G ) )  =  ( ( * `  S
)  x.  ( * `
 ( G  .ih  F ) ) )
192, 8cjmuli 11604 . . . . . . . 8  |-  ( * `
 ( S  x.  ( G  .ih  F ) ) )  =  ( ( * `  S
)  x.  ( * `
 ( G  .ih  F ) ) )
2018, 19eqtr4i 2279 . . . . . . 7  |-  ( ( * `  S )  x.  ( F  .ih  G ) )  =  ( * `  ( S  x.  ( G  .ih  F ) ) )
2116, 20oveq12i 5769 . . . . . 6  |-  ( ( S  x.  ( G 
.ih  F ) )  +  ( ( * `
 S )  x.  ( F  .ih  G
) ) )  =  ( ( * `  ( ( * `  S )  x.  ( F  .ih  G ) ) )  +  ( * `
 ( S  x.  ( G  .ih  F ) ) ) )
2210, 21eqtr4i 2279 . . . . 5  |-  ( * `
 ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) ) )  =  ( ( S  x.  ( G  .ih  F ) )  +  ( ( * `
 S )  x.  ( F  .ih  G
) ) )
237, 9addcomi 8936 . . . . 5  |-  ( ( ( * `  S
)  x.  ( F 
.ih  G ) )  +  ( S  x.  ( G  .ih  F ) ) )  =  ( ( S  x.  ( G  .ih  F ) )  +  ( ( * `
 S )  x.  ( F  .ih  G
) ) )
2422, 23eqtr4i 2279 . . . 4  |-  ( * `
 ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) ) )  =  ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G  .ih  F ) ) )
257, 9addcli 8774 . . . . 5  |-  ( ( ( * `  S
)  x.  ( F 
.ih  G ) )  +  ( S  x.  ( G  .ih  F ) ) )  e.  CC
2625cjrebi 11589 . . . 4  |-  ( ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G  .ih  F ) ) )  e.  RR  <->  ( * `  ( ( ( * `  S
)  x.  ( F 
.ih  G ) )  +  ( S  x.  ( G  .ih  F ) ) ) )  =  ( ( ( * `
 S )  x.  ( F  .ih  G
) )  +  ( S  x.  ( G 
.ih  F ) ) ) )
2724, 26mpbir 202 . . 3  |-  ( ( ( * `  S
)  x.  ( F 
.ih  G ) )  +  ( S  x.  ( G  .ih  F ) ) )  e.  RR
2827renegcli 9041 . 2  |-  -u (
( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G  .ih  F ) ) )  e.  RR
291, 28eqeltri 2326 1  |-  B  e.  RR
Colors of variables: wff set class
Syntax hints:    = wceq 1619    e. wcel 1621   ` cfv 4638  (class class class)co 5757   CCcc 8668   RRcr 8669    + caddc 8673    x. cmul 8675   -ucneg 8971   *ccj 11511   ~Hchil 21424    .ih csp 21427
This theorem is referenced by:  normlem3  21616  normlem6  21619  normlem7  21620  norm-ii-i  21641
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-hfi 21583  ax-his1 21586
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-po 4251  df-so 4252  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-iota 6190  df-riota 6237  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-2 9737  df-cj 11514  df-re 11515  df-im 11516
  Copyright terms: Public domain W3C validator