HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem2 Unicode version

Theorem normlem2 21651
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 27-Jul-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1  |-  S  e.  CC
normlem1.2  |-  F  e. 
~H
normlem1.3  |-  G  e. 
~H
normlem2.4  |-  B  = 
-u ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) )
Assertion
Ref Expression
normlem2  |-  B  e.  RR

Proof of Theorem normlem2
StepHypRef Expression
1 normlem2.4 . 2  |-  B  = 
-u ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) )
2 normlem1.1 . . . . . . . . 9  |-  S  e.  CC
32cjcli 11620 . . . . . . . 8  |-  ( * `
 S )  e.  CC
4 normlem1.2 . . . . . . . . 9  |-  F  e. 
~H
5 normlem1.3 . . . . . . . . 9  |-  G  e. 
~H
64, 5hicli 21621 . . . . . . . 8  |-  ( F 
.ih  G )  e.  CC
73, 6mulcli 8810 . . . . . . 7  |-  ( ( * `  S )  x.  ( F  .ih  G ) )  e.  CC
85, 4hicli 21621 . . . . . . . 8  |-  ( G 
.ih  F )  e.  CC
92, 8mulcli 8810 . . . . . . 7  |-  ( S  x.  ( G  .ih  F ) )  e.  CC
107, 9cjaddi 11639 . . . . . 6  |-  ( * `
 ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) ) )  =  ( ( * `  (
( * `  S
)  x.  ( F 
.ih  G ) ) )  +  ( * `
 ( S  x.  ( G  .ih  F ) ) ) )
112cjcji 11622 . . . . . . . . . 10  |-  ( * `
 ( * `  S ) )  =  S
1211eqcomi 2262 . . . . . . . . 9  |-  S  =  ( * `  (
* `  S )
)
135, 4his1i 21640 . . . . . . . . 9  |-  ( G 
.ih  F )  =  ( * `  ( F  .ih  G ) )
1412, 13oveq12i 5804 . . . . . . . 8  |-  ( S  x.  ( G  .ih  F ) )  =  ( ( * `  (
* `  S )
)  x.  ( * `
 ( F  .ih  G ) ) )
153, 6cjmuli 11640 . . . . . . . 8  |-  ( * `
 ( ( * `
 S )  x.  ( F  .ih  G
) ) )  =  ( ( * `  ( * `  S
) )  x.  (
* `  ( F  .ih  G ) ) )
1614, 15eqtr4i 2281 . . . . . . 7  |-  ( S  x.  ( G  .ih  F ) )  =  ( * `  ( ( * `  S )  x.  ( F  .ih  G ) ) )
174, 5his1i 21640 . . . . . . . . 9  |-  ( F 
.ih  G )  =  ( * `  ( G  .ih  F ) )
1817oveq2i 5803 . . . . . . . 8  |-  ( ( * `  S )  x.  ( F  .ih  G ) )  =  ( ( * `  S
)  x.  ( * `
 ( G  .ih  F ) ) )
192, 8cjmuli 11640 . . . . . . . 8  |-  ( * `
 ( S  x.  ( G  .ih  F ) ) )  =  ( ( * `  S
)  x.  ( * `
 ( G  .ih  F ) ) )
2018, 19eqtr4i 2281 . . . . . . 7  |-  ( ( * `  S )  x.  ( F  .ih  G ) )  =  ( * `  ( S  x.  ( G  .ih  F ) ) )
2116, 20oveq12i 5804 . . . . . 6  |-  ( ( S  x.  ( G 
.ih  F ) )  +  ( ( * `
 S )  x.  ( F  .ih  G
) ) )  =  ( ( * `  ( ( * `  S )  x.  ( F  .ih  G ) ) )  +  ( * `
 ( S  x.  ( G  .ih  F ) ) ) )
2210, 21eqtr4i 2281 . . . . 5  |-  ( * `
 ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) ) )  =  ( ( S  x.  ( G  .ih  F ) )  +  ( ( * `
 S )  x.  ( F  .ih  G
) ) )
237, 9addcomi 8971 . . . . 5  |-  ( ( ( * `  S
)  x.  ( F 
.ih  G ) )  +  ( S  x.  ( G  .ih  F ) ) )  =  ( ( S  x.  ( G  .ih  F ) )  +  ( ( * `
 S )  x.  ( F  .ih  G
) ) )
2422, 23eqtr4i 2281 . . . 4  |-  ( * `
 ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) ) )  =  ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G  .ih  F ) ) )
257, 9addcli 8809 . . . . 5  |-  ( ( ( * `  S
)  x.  ( F 
.ih  G ) )  +  ( S  x.  ( G  .ih  F ) ) )  e.  CC
2625cjrebi 11625 . . . 4  |-  ( ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G  .ih  F ) ) )  e.  RR  <->  ( * `  ( ( ( * `  S
)  x.  ( F 
.ih  G ) )  +  ( S  x.  ( G  .ih  F ) ) ) )  =  ( ( ( * `
 S )  x.  ( F  .ih  G
) )  +  ( S  x.  ( G 
.ih  F ) ) ) )
2724, 26mpbir 202 . . 3  |-  ( ( ( * `  S
)  x.  ( F 
.ih  G ) )  +  ( S  x.  ( G  .ih  F ) ) )  e.  RR
2827renegcli 9076 . 2  |-  -u (
( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G  .ih  F ) ) )  e.  RR
291, 28eqeltri 2328 1  |-  B  e.  RR
Colors of variables: wff set class
Syntax hints:    = wceq 1619    e. wcel 1621   ` cfv 4673  (class class class)co 5792   CCcc 8703   RRcr 8704    + caddc 8708    x. cmul 8710   -ucneg 9006   *ccj 11547   ~Hchil 21460    .ih csp 21463
This theorem is referenced by:  normlem3  21652  normlem6  21655  normlem7  21656  norm-ii-i  21677
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-hfi 21619  ax-his1 21622
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-po 4286  df-so 4287  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-iota 6225  df-riota 6272  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-2 9772  df-cj 11550  df-re 11551  df-im 11552
  Copyright terms: Public domain W3C validator