HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem4 Unicode version

Theorem normlem4 22598
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1  |-  S  e.  CC
normlem1.2  |-  F  e. 
~H
normlem1.3  |-  G  e. 
~H
normlem2.4  |-  B  = 
-u ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) )
normlem3.5  |-  A  =  ( G  .ih  G
)
normlem3.6  |-  C  =  ( F  .ih  F
)
normlem4.7  |-  R  e.  RR
normlem4.8  |-  ( abs `  S )  =  1
Assertion
Ref Expression
normlem4  |-  ( ( F  -h  ( ( S  x.  R )  .h  G ) ) 
.ih  ( F  -h  ( ( S  x.  R )  .h  G
) ) )  =  ( ( ( A  x.  ( R ^
2 ) )  +  ( B  x.  R
) )  +  C
)

Proof of Theorem normlem4
StepHypRef Expression
1 normlem1.1 . . 3  |-  S  e.  CC
2 normlem1.2 . . 3  |-  F  e. 
~H
3 normlem1.3 . . 3  |-  G  e. 
~H
4 normlem4.7 . . 3  |-  R  e.  RR
5 normlem4.8 . . 3  |-  ( abs `  S )  =  1
61, 2, 3, 4, 5normlem1 22595 . 2  |-  ( ( F  -h  ( ( S  x.  R )  .h  G ) ) 
.ih  ( F  -h  ( ( S  x.  R )  .h  G
) ) )  =  ( ( ( F 
.ih  F )  +  ( ( ( * `
 S )  x.  -u R )  x.  ( F  .ih  G ) ) )  +  ( ( ( S  x.  -u R
)  x.  ( G 
.ih  F ) )  +  ( ( R ^ 2 )  x.  ( G  .ih  G
) ) ) )
7 normlem2.4 . . 3  |-  B  = 
-u ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) )
8 normlem3.5 . . 3  |-  A  =  ( G  .ih  G
)
9 normlem3.6 . . 3  |-  C  =  ( F  .ih  F
)
101, 2, 3, 7, 8, 9, 4normlem3 22597 . 2  |-  ( ( ( A  x.  ( R ^ 2 ) )  +  ( B  x.  R ) )  +  C )  =  ( ( ( F  .ih  F )  +  ( ( ( * `  S
)  x.  -u R
)  x.  ( F 
.ih  G ) ) )  +  ( ( ( S  x.  -u R
)  x.  ( G 
.ih  F ) )  +  ( ( R ^ 2 )  x.  ( G  .ih  G
) ) ) )
116, 10eqtr4i 2453 1  |-  ( ( F  -h  ( ( S  x.  R )  .h  G ) ) 
.ih  ( F  -h  ( ( S  x.  R )  .h  G
) ) )  =  ( ( ( A  x.  ( R ^
2 ) )  +  ( B  x.  R
) )  +  C
)
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725   ` cfv 5440  (class class class)co 6067   CCcc 8972   RRcr 8973   1c1 8975    + caddc 8977    x. cmul 8979   -ucneg 9276   2c2 10033   ^cexp 11365   *ccj 11884   abscabs 12022   ~Hchil 22405    .h csm 22407    .ih csp 22408    -h cmv 22411
This theorem is referenced by:  normlem5  22599
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687  ax-cnex 9030  ax-resscn 9031  ax-1cn 9032  ax-icn 9033  ax-addcl 9034  ax-addrcl 9035  ax-mulcl 9036  ax-mulrcl 9037  ax-mulcom 9038  ax-addass 9039  ax-mulass 9040  ax-distr 9041  ax-i2m1 9042  ax-1ne0 9043  ax-1rid 9044  ax-rnegex 9045  ax-rrecex 9046  ax-cnre 9047  ax-pre-lttri 9048  ax-pre-lttrn 9049  ax-pre-ltadd 9050  ax-pre-mulgt0 9051  ax-pre-sup 9052  ax-hfvadd 22486  ax-hfvmul 22491  ax-hvmulass 22493  ax-hfi 22564  ax-his1 22567  ax-his2 22568  ax-his3 22569
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rmo 2700  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-we 4530  df-ord 4571  df-on 4572  df-lim 4573  df-suc 4574  df-om 4832  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-2nd 6336  df-riota 6535  df-recs 6619  df-rdg 6654  df-er 6891  df-en 7096  df-dom 7097  df-sdom 7098  df-sup 7432  df-pnf 9106  df-mnf 9107  df-xr 9108  df-ltxr 9109  df-le 9110  df-sub 9277  df-neg 9278  df-div 9662  df-nn 9985  df-2 10042  df-3 10043  df-n0 10206  df-z 10267  df-uz 10473  df-rp 10597  df-seq 11307  df-exp 11366  df-cj 11887  df-re 11888  df-im 11889  df-sqr 12023  df-abs 12024  df-hvsub 22457
  Copyright terms: Public domain W3C validator