Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem5 Unicode version

Theorem normlem5 21654
 Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 10-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1
normlem1.2
normlem1.3
normlem2.4
normlem3.5
normlem3.6
normlem4.7
normlem4.8
Assertion
Ref Expression
normlem5

Proof of Theorem normlem5
StepHypRef Expression
1 normlem1.2 . . . 4
2 normlem1.1 . . . . . 6
3 normlem4.7 . . . . . . 7
43recni 8817 . . . . . 6
52, 4mulcli 8810 . . . . 5
6 normlem1.3 . . . . 5
75, 6hvmulcli 21555 . . . 4
81, 7hvsubcli 21562 . . 3
9 hiidge0 21638 . . 3
108, 9ax-mp 10 . 2
11 normlem2.4 . . 3
12 normlem3.5 . . 3
13 normlem3.6 . . 3
14 normlem4.8 . . 3
152, 1, 6, 11, 12, 13, 3, 14normlem4 21653 . 2
1610, 15breqtri 4020 1
 Colors of variables: wff set class Syntax hints:   wceq 1619   wcel 1621   class class class wbr 3997  cfv 4673  (class class class)co 5792  cc 8703  cr 8704  cc0 8705  c1 8706   caddc 8708   cmul 8710   cle 8836  cneg 9006  c2 9763  cexp 11071  ccj 11547  cabs 11685  chil 21460   csm 21462   csp 21463   cmv 21466 This theorem is referenced by:  normlem6  21655 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-hfvadd 21541  ax-hv0cl 21544  ax-hfvmul 21546  ax-hvmulass 21548  ax-hvmul0 21551  ax-hfi 21619  ax-his1 21622  ax-his2 21623  ax-his3 21624  ax-his4 21625 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-sup 7162  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9934  df-z 9993  df-uz 10199  df-rp 10323  df-seq 11014  df-exp 11072  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687  df-hvsub 21512
 Copyright terms: Public domain W3C validator