HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem6 Unicode version

Theorem normlem6 21808
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 4-Jun-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1  |-  S  e.  CC
normlem1.2  |-  F  e. 
~H
normlem1.3  |-  G  e. 
~H
normlem2.4  |-  B  = 
-u ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) )
normlem3.5  |-  A  =  ( G  .ih  G
)
normlem3.6  |-  C  =  ( F  .ih  F
)
normlem6.7  |-  ( abs `  S )  =  1
Assertion
Ref Expression
normlem6  |-  ( abs `  B )  <_  (
2  x.  ( ( sqr `  A )  x.  ( sqr `  C
) ) )

Proof of Theorem normlem6
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 normlem3.5 . . . . . . . . 9  |-  A  =  ( G  .ih  G
)
2 normlem1.3 . . . . . . . . . 10  |-  G  e. 
~H
3 hiidrcl 21788 . . . . . . . . . 10  |-  ( G  e.  ~H  ->  ( G  .ih  G )  e.  RR )
42, 3ax-mp 8 . . . . . . . . 9  |-  ( G 
.ih  G )  e.  RR
51, 4eqeltri 2428 . . . . . . . 8  |-  A  e.  RR
65a1i 10 . . . . . . 7  |-  (  T. 
->  A  e.  RR )
7 normlem1.1 . . . . . . . . 9  |-  S  e.  CC
8 normlem1.2 . . . . . . . . 9  |-  F  e. 
~H
9 normlem2.4 . . . . . . . . 9  |-  B  = 
-u ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) )
107, 8, 2, 9normlem2 21804 . . . . . . . 8  |-  B  e.  RR
1110a1i 10 . . . . . . 7  |-  (  T. 
->  B  e.  RR )
12 normlem3.6 . . . . . . . . 9  |-  C  =  ( F  .ih  F
)
13 hiidrcl 21788 . . . . . . . . . 10  |-  ( F  e.  ~H  ->  ( F  .ih  F )  e.  RR )
148, 13ax-mp 8 . . . . . . . . 9  |-  ( F 
.ih  F )  e.  RR
1512, 14eqeltri 2428 . . . . . . . 8  |-  C  e.  RR
1615a1i 10 . . . . . . 7  |-  (  T. 
->  C  e.  RR )
17 oveq1 5952 . . . . . . . . . . . . 13  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( x ^ 2 )  =  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )
1817oveq2d 5961 . . . . . . . . . . . 12  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( A  x.  (
x ^ 2 ) )  =  ( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) ) )
19 oveq2 5953 . . . . . . . . . . . 12  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( B  x.  x
)  =  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) )
2018, 19oveq12d 5963 . . . . . . . . . . 11  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  =  ( ( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )  +  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) ) )
2120oveq1d 5960 . . . . . . . . . 10  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( ( ( A  x.  ( x ^
2 ) )  +  ( B  x.  x
) )  +  C
)  =  ( ( ( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )  +  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) )  +  C
) )
2221breq2d 4116 . . . . . . . . 9  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( 0  <_  (
( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  +  C )  <->  0  <_  ( (
( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )  +  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) )  +  C
) ) )
23 0re 8928 . . . . . . . . . . 11  |-  0  e.  RR
2423elimel 3693 . . . . . . . . . 10  |-  if ( x  e.  RR ,  x ,  0 )  e.  RR
25 normlem6.7 . . . . . . . . . 10  |-  ( abs `  S )  =  1
267, 8, 2, 9, 1, 12, 24, 25normlem5 21807 . . . . . . . . 9  |-  0  <_  ( ( ( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )  +  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) )  +  C
)
2722, 26dedth 3682 . . . . . . . 8  |-  ( x  e.  RR  ->  0  <_  ( ( ( A  x.  ( x ^
2 ) )  +  ( B  x.  x
) )  +  C
) )
2827adantl 452 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR )  ->  0  <_  ( ( ( A  x.  ( x ^
2 ) )  +  ( B  x.  x
) )  +  C
) )
296, 11, 16, 28discr 11331 . . . . . 6  |-  (  T. 
->  ( ( B ^
2 )  -  (
4  x.  ( A  x.  C ) ) )  <_  0 )
3029trud 1323 . . . . 5  |-  ( ( B ^ 2 )  -  ( 4  x.  ( A  x.  C
) ) )  <_ 
0
3110resqcli 11282 . . . . . 6  |-  ( B ^ 2 )  e.  RR
32 4re 9909 . . . . . . 7  |-  4  e.  RR
335, 15remulcli 8941 . . . . . . 7  |-  ( A  x.  C )  e.  RR
3432, 33remulcli 8941 . . . . . 6  |-  ( 4  x.  ( A  x.  C ) )  e.  RR
3531, 34, 23lesubadd2i 9423 . . . . 5  |-  ( ( ( B ^ 2 )  -  ( 4  x.  ( A  x.  C ) ) )  <_  0  <->  ( B ^ 2 )  <_ 
( ( 4  x.  ( A  x.  C
) )  +  0 ) )
3630, 35mpbi 199 . . . 4  |-  ( B ^ 2 )  <_ 
( ( 4  x.  ( A  x.  C
) )  +  0 )
3734recni 8939 . . . . 5  |-  ( 4  x.  ( A  x.  C ) )  e.  CC
3837addid1i 9089 . . . 4  |-  ( ( 4  x.  ( A  x.  C ) )  +  0 )  =  ( 4  x.  ( A  x.  C )
)
3936, 38breqtri 4127 . . 3  |-  ( B ^ 2 )  <_ 
( 4  x.  ( A  x.  C )
)
4010sqge0i 11284 . . . 4  |-  0  <_  ( B ^ 2 )
41 4pos 9922 . . . . . 6  |-  0  <  4
4223, 32, 41ltleii 9031 . . . . 5  |-  0  <_  4
43 hiidge0 21791 . . . . . . . 8  |-  ( G  e.  ~H  ->  0  <_  ( G  .ih  G
) )
442, 43ax-mp 8 . . . . . . 7  |-  0  <_  ( G  .ih  G
)
4544, 1breqtrri 4129 . . . . . 6  |-  0  <_  A
46 hiidge0 21791 . . . . . . . 8  |-  ( F  e.  ~H  ->  0  <_  ( F  .ih  F
) )
478, 46ax-mp 8 . . . . . . 7  |-  0  <_  ( F  .ih  F
)
4847, 12breqtrri 4129 . . . . . 6  |-  0  <_  C
495, 15mulge0i 9410 . . . . . 6  |-  ( ( 0  <_  A  /\  0  <_  C )  -> 
0  <_  ( A  x.  C ) )
5045, 48, 49mp2an 653 . . . . 5  |-  0  <_  ( A  x.  C
)
5132, 33mulge0i 9410 . . . . 5  |-  ( ( 0  <_  4  /\  0  <_  ( A  x.  C ) )  -> 
0  <_  ( 4  x.  ( A  x.  C ) ) )
5242, 50, 51mp2an 653 . . . 4  |-  0  <_  ( 4  x.  ( A  x.  C )
)
5331, 34sqrlei 11968 . . . 4  |-  ( ( 0  <_  ( B ^ 2 )  /\  0  <_  ( 4  x.  ( A  x.  C
) ) )  -> 
( ( B ^
2 )  <_  (
4  x.  ( A  x.  C ) )  <-> 
( sqr `  ( B ^ 2 ) )  <_  ( sqr `  (
4  x.  ( A  x.  C ) ) ) ) )
5440, 52, 53mp2an 653 . . 3  |-  ( ( B ^ 2 )  <_  ( 4  x.  ( A  x.  C
) )  <->  ( sqr `  ( B ^ 2 ) )  <_  ( sqr `  ( 4  x.  ( A  x.  C
) ) ) )
5539, 54mpbi 199 . 2  |-  ( sqr `  ( B ^ 2 ) )  <_  ( sqr `  ( 4  x.  ( A  x.  C
) ) )
5610absrei 11961 . 2  |-  ( abs `  B )  =  ( sqr `  ( B ^ 2 ) )
5732, 33, 42, 50sqrmulii 11966 . . 3  |-  ( sqr `  ( 4  x.  ( A  x.  C )
) )  =  ( ( sqr `  4
)  x.  ( sqr `  ( A  x.  C
) ) )
58 sqr4 11854 . . . 4  |-  ( sqr `  4 )  =  2
595, 15, 45, 48sqrmulii 11966 . . . 4  |-  ( sqr `  ( A  x.  C
) )  =  ( ( sqr `  A
)  x.  ( sqr `  C ) )
6058, 59oveq12i 5957 . . 3  |-  ( ( sqr `  4 )  x.  ( sqr `  ( A  x.  C )
) )  =  ( 2  x.  ( ( sqr `  A )  x.  ( sqr `  C
) ) )
6157, 60eqtr2i 2379 . 2  |-  ( 2  x.  ( ( sqr `  A )  x.  ( sqr `  C ) ) )  =  ( sqr `  ( 4  x.  ( A  x.  C )
) )
6255, 56, 613brtr4i 4132 1  |-  ( abs `  B )  <_  (
2  x.  ( ( sqr `  A )  x.  ( sqr `  C
) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    T. wtru 1316    = wceq 1642    e. wcel 1710   ifcif 3641   class class class wbr 4104   ` cfv 5337  (class class class)co 5945   CCcc 8825   RRcr 8826   0cc0 8827   1c1 8828    + caddc 8830    x. cmul 8832    <_ cle 8958    - cmin 9127   -ucneg 9128   2c2 9885   4c4 9887   ^cexp 11197   *ccj 11677   sqrcsqr 11814   abscabs 11815   ~Hchil 21613    .ih csp 21616
This theorem is referenced by:  normlem7  21809
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905  ax-hfvadd 21694  ax-hv0cl 21697  ax-hfvmul 21699  ax-hvmulass 21701  ax-hvmul0 21704  ax-hfi 21772  ax-his1 21775  ax-his2 21776  ax-his3 21777  ax-his4 21778
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-sup 7284  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-n0 10058  df-z 10117  df-uz 10323  df-rp 10447  df-seq 11139  df-exp 11198  df-cj 11680  df-re 11681  df-im 11682  df-sqr 11816  df-abs 11817  df-hvsub 21665
  Copyright terms: Public domain W3C validator