HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem6 Unicode version

Theorem normlem6 21690
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 4-Jun-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1  |-  S  e.  CC
normlem1.2  |-  F  e. 
~H
normlem1.3  |-  G  e. 
~H
normlem2.4  |-  B  = 
-u ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) )
normlem3.5  |-  A  =  ( G  .ih  G
)
normlem3.6  |-  C  =  ( F  .ih  F
)
normlem6.7  |-  ( abs `  S )  =  1
Assertion
Ref Expression
normlem6  |-  ( abs `  B )  <_  (
2  x.  ( ( sqr `  A )  x.  ( sqr `  C
) ) )

Proof of Theorem normlem6
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 normlem3.5 . . . . . . . . 9  |-  A  =  ( G  .ih  G
)
2 normlem1.3 . . . . . . . . . 10  |-  G  e. 
~H
3 hiidrcl 21670 . . . . . . . . . 10  |-  ( G  e.  ~H  ->  ( G  .ih  G )  e.  RR )
42, 3ax-mp 8 . . . . . . . . 9  |-  ( G 
.ih  G )  e.  RR
51, 4eqeltri 2354 . . . . . . . 8  |-  A  e.  RR
65a1i 10 . . . . . . 7  |-  (  T. 
->  A  e.  RR )
7 normlem1.1 . . . . . . . . 9  |-  S  e.  CC
8 normlem1.2 . . . . . . . . 9  |-  F  e. 
~H
9 normlem2.4 . . . . . . . . 9  |-  B  = 
-u ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) )
107, 8, 2, 9normlem2 21686 . . . . . . . 8  |-  B  e.  RR
1110a1i 10 . . . . . . 7  |-  (  T. 
->  B  e.  RR )
12 normlem3.6 . . . . . . . . 9  |-  C  =  ( F  .ih  F
)
13 hiidrcl 21670 . . . . . . . . . 10  |-  ( F  e.  ~H  ->  ( F  .ih  F )  e.  RR )
148, 13ax-mp 8 . . . . . . . . 9  |-  ( F 
.ih  F )  e.  RR
1512, 14eqeltri 2354 . . . . . . . 8  |-  C  e.  RR
1615a1i 10 . . . . . . 7  |-  (  T. 
->  C  e.  RR )
17 oveq1 5827 . . . . . . . . . . . . 13  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( x ^ 2 )  =  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )
1817oveq2d 5836 . . . . . . . . . . . 12  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( A  x.  (
x ^ 2 ) )  =  ( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) ) )
19 oveq2 5828 . . . . . . . . . . . 12  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( B  x.  x
)  =  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) )
2018, 19oveq12d 5838 . . . . . . . . . . 11  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  =  ( ( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )  +  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) ) )
2120oveq1d 5835 . . . . . . . . . 10  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( ( ( A  x.  ( x ^
2 ) )  +  ( B  x.  x
) )  +  C
)  =  ( ( ( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )  +  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) )  +  C
) )
2221breq2d 4036 . . . . . . . . 9  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( 0  <_  (
( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  +  C )  <->  0  <_  ( (
( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )  +  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) )  +  C
) ) )
23 0re 8834 . . . . . . . . . . 11  |-  0  e.  RR
2423elimel 3618 . . . . . . . . . 10  |-  if ( x  e.  RR ,  x ,  0 )  e.  RR
25 normlem6.7 . . . . . . . . . 10  |-  ( abs `  S )  =  1
267, 8, 2, 9, 1, 12, 24, 25normlem5 21689 . . . . . . . . 9  |-  0  <_  ( ( ( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )  +  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) )  +  C
)
2722, 26dedth 3607 . . . . . . . 8  |-  ( x  e.  RR  ->  0  <_  ( ( ( A  x.  ( x ^
2 ) )  +  ( B  x.  x
) )  +  C
) )
2827adantl 452 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR )  ->  0  <_  ( ( ( A  x.  ( x ^
2 ) )  +  ( B  x.  x
) )  +  C
) )
296, 11, 16, 28discr 11234 . . . . . 6  |-  (  T. 
->  ( ( B ^
2 )  -  (
4  x.  ( A  x.  C ) ) )  <_  0 )
3029trud 1314 . . . . 5  |-  ( ( B ^ 2 )  -  ( 4  x.  ( A  x.  C
) ) )  <_ 
0
3110resqcli 11185 . . . . . 6  |-  ( B ^ 2 )  e.  RR
32 4re 9815 . . . . . . 7  |-  4  e.  RR
335, 15remulcli 8847 . . . . . . 7  |-  ( A  x.  C )  e.  RR
3432, 33remulcli 8847 . . . . . 6  |-  ( 4  x.  ( A  x.  C ) )  e.  RR
3531, 34, 23lesubadd2i 9329 . . . . 5  |-  ( ( ( B ^ 2 )  -  ( 4  x.  ( A  x.  C ) ) )  <_  0  <->  ( B ^ 2 )  <_ 
( ( 4  x.  ( A  x.  C
) )  +  0 ) )
3630, 35mpbi 199 . . . 4  |-  ( B ^ 2 )  <_ 
( ( 4  x.  ( A  x.  C
) )  +  0 )
3734recni 8845 . . . . 5  |-  ( 4  x.  ( A  x.  C ) )  e.  CC
3837addid1i 8995 . . . 4  |-  ( ( 4  x.  ( A  x.  C ) )  +  0 )  =  ( 4  x.  ( A  x.  C )
)
3936, 38breqtri 4047 . . 3  |-  ( B ^ 2 )  <_ 
( 4  x.  ( A  x.  C )
)
4010sqge0i 11187 . . . 4  |-  0  <_  ( B ^ 2 )
41 4pos 9828 . . . . . 6  |-  0  <  4
4223, 32, 41ltleii 8937 . . . . 5  |-  0  <_  4
43 hiidge0 21673 . . . . . . . 8  |-  ( G  e.  ~H  ->  0  <_  ( G  .ih  G
) )
442, 43ax-mp 8 . . . . . . 7  |-  0  <_  ( G  .ih  G
)
4544, 1breqtrri 4049 . . . . . 6  |-  0  <_  A
46 hiidge0 21673 . . . . . . . 8  |-  ( F  e.  ~H  ->  0  <_  ( F  .ih  F
) )
478, 46ax-mp 8 . . . . . . 7  |-  0  <_  ( F  .ih  F
)
4847, 12breqtrri 4049 . . . . . 6  |-  0  <_  C
495, 15mulge0i 9316 . . . . . 6  |-  ( ( 0  <_  A  /\  0  <_  C )  -> 
0  <_  ( A  x.  C ) )
5045, 48, 49mp2an 653 . . . . 5  |-  0  <_  ( A  x.  C
)
5132, 33mulge0i 9316 . . . . 5  |-  ( ( 0  <_  4  /\  0  <_  ( A  x.  C ) )  -> 
0  <_  ( 4  x.  ( A  x.  C ) ) )
5242, 50, 51mp2an 653 . . . 4  |-  0  <_  ( 4  x.  ( A  x.  C )
)
5331, 34sqrlei 11868 . . . 4  |-  ( ( 0  <_  ( B ^ 2 )  /\  0  <_  ( 4  x.  ( A  x.  C
) ) )  -> 
( ( B ^
2 )  <_  (
4  x.  ( A  x.  C ) )  <-> 
( sqr `  ( B ^ 2 ) )  <_  ( sqr `  (
4  x.  ( A  x.  C ) ) ) ) )
5440, 52, 53mp2an 653 . . 3  |-  ( ( B ^ 2 )  <_  ( 4  x.  ( A  x.  C
) )  <->  ( sqr `  ( B ^ 2 ) )  <_  ( sqr `  ( 4  x.  ( A  x.  C
) ) ) )
5539, 54mpbi 199 . 2  |-  ( sqr `  ( B ^ 2 ) )  <_  ( sqr `  ( 4  x.  ( A  x.  C
) ) )
5610absrei 11861 . 2  |-  ( abs `  B )  =  ( sqr `  ( B ^ 2 ) )
5732, 33, 42, 50sqrmulii 11866 . . 3  |-  ( sqr `  ( 4  x.  ( A  x.  C )
) )  =  ( ( sqr `  4
)  x.  ( sqr `  ( A  x.  C
) ) )
58 sqr4 11754 . . . 4  |-  ( sqr `  4 )  =  2
595, 15, 45, 48sqrmulii 11866 . . . 4  |-  ( sqr `  ( A  x.  C
) )  =  ( ( sqr `  A
)  x.  ( sqr `  C ) )
6058, 59oveq12i 5832 . . 3  |-  ( ( sqr `  4 )  x.  ( sqr `  ( A  x.  C )
) )  =  ( 2  x.  ( ( sqr `  A )  x.  ( sqr `  C
) ) )
6157, 60eqtr2i 2305 . 2  |-  ( 2  x.  ( ( sqr `  A )  x.  ( sqr `  C ) ) )  =  ( sqr `  ( 4  x.  ( A  x.  C )
) )
6255, 56, 613brtr4i 4052 1  |-  ( abs `  B )  <_  (
2  x.  ( ( sqr `  A )  x.  ( sqr `  C
) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    T. wtru 1307    = wceq 1623    e. wcel 1685   ifcif 3566   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   CCcc 8731   RRcr 8732   0cc0 8733   1c1 8734    + caddc 8736    x. cmul 8738    <_ cle 8864    - cmin 9033   -ucneg 9034   2c2 9791   4c4 9793   ^cexp 11100   *ccj 11577   sqrcsqr 11714   abscabs 11715   ~Hchil 21495    .ih csp 21498
This theorem is referenced by:  normlem7  21691
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811  ax-hfvadd 21576  ax-hv0cl 21579  ax-hfvmul 21581  ax-hvmulass 21583  ax-hvmul0 21586  ax-hfi 21654  ax-his1 21657  ax-his2 21658  ax-his3 21659  ax-his4 21660
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-sup 7190  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-n0 9962  df-z 10021  df-uz 10227  df-rp 10351  df-seq 11043  df-exp 11101  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-hvsub 21547
  Copyright terms: Public domain W3C validator