HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem6 Unicode version

Theorem normlem6 21619
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 4-Jun-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1  |-  S  e.  CC
normlem1.2  |-  F  e. 
~H
normlem1.3  |-  G  e. 
~H
normlem2.4  |-  B  = 
-u ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) )
normlem3.5  |-  A  =  ( G  .ih  G
)
normlem3.6  |-  C  =  ( F  .ih  F
)
normlem6.7  |-  ( abs `  S )  =  1
Assertion
Ref Expression
normlem6  |-  ( abs `  B )  <_  (
2  x.  ( ( sqr `  A )  x.  ( sqr `  C
) ) )

Proof of Theorem normlem6
StepHypRef Expression
1 normlem3.5 . . . . . . . . 9  |-  A  =  ( G  .ih  G
)
2 normlem1.3 . . . . . . . . . 10  |-  G  e. 
~H
3 hiidrcl 21599 . . . . . . . . . 10  |-  ( G  e.  ~H  ->  ( G  .ih  G )  e.  RR )
42, 3ax-mp 10 . . . . . . . . 9  |-  ( G 
.ih  G )  e.  RR
51, 4eqeltri 2326 . . . . . . . 8  |-  A  e.  RR
65a1i 12 . . . . . . 7  |-  (  T. 
->  A  e.  RR )
7 normlem1.1 . . . . . . . . 9  |-  S  e.  CC
8 normlem1.2 . . . . . . . . 9  |-  F  e. 
~H
9 normlem2.4 . . . . . . . . 9  |-  B  = 
-u ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) )
107, 8, 2, 9normlem2 21615 . . . . . . . 8  |-  B  e.  RR
1110a1i 12 . . . . . . 7  |-  (  T. 
->  B  e.  RR )
12 normlem3.6 . . . . . . . . 9  |-  C  =  ( F  .ih  F
)
13 hiidrcl 21599 . . . . . . . . . 10  |-  ( F  e.  ~H  ->  ( F  .ih  F )  e.  RR )
148, 13ax-mp 10 . . . . . . . . 9  |-  ( F 
.ih  F )  e.  RR
1512, 14eqeltri 2326 . . . . . . . 8  |-  C  e.  RR
1615a1i 12 . . . . . . 7  |-  (  T. 
->  C  e.  RR )
17 oveq1 5764 . . . . . . . . . . . . 13  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( x ^ 2 )  =  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )
1817oveq2d 5773 . . . . . . . . . . . 12  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( A  x.  (
x ^ 2 ) )  =  ( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) ) )
19 oveq2 5765 . . . . . . . . . . . 12  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( B  x.  x
)  =  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) )
2018, 19oveq12d 5775 . . . . . . . . . . 11  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  =  ( ( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )  +  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) ) )
2120oveq1d 5772 . . . . . . . . . 10  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( ( ( A  x.  ( x ^
2 ) )  +  ( B  x.  x
) )  +  C
)  =  ( ( ( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )  +  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) )  +  C
) )
2221breq2d 3975 . . . . . . . . 9  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( 0  <_  (
( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  +  C )  <->  0  <_  ( (
( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )  +  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) )  +  C
) ) )
23 0re 8771 . . . . . . . . . . 11  |-  0  e.  RR
2423elimel 3558 . . . . . . . . . 10  |-  if ( x  e.  RR ,  x ,  0 )  e.  RR
25 normlem6.7 . . . . . . . . . 10  |-  ( abs `  S )  =  1
267, 8, 2, 9, 1, 12, 24, 25normlem5 21618 . . . . . . . . 9  |-  0  <_  ( ( ( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )  +  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) )  +  C
)
2722, 26dedth 3547 . . . . . . . 8  |-  ( x  e.  RR  ->  0  <_  ( ( ( A  x.  ( x ^
2 ) )  +  ( B  x.  x
) )  +  C
) )
2827adantl 454 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR )  ->  0  <_  ( ( ( A  x.  ( x ^
2 ) )  +  ( B  x.  x
) )  +  C
) )
296, 11, 16, 28discr 11169 . . . . . 6  |-  (  T. 
->  ( ( B ^
2 )  -  (
4  x.  ( A  x.  C ) ) )  <_  0 )
3029trud 1320 . . . . 5  |-  ( ( B ^ 2 )  -  ( 4  x.  ( A  x.  C
) ) )  <_ 
0
3110resqcli 11120 . . . . . 6  |-  ( B ^ 2 )  e.  RR
32 4re 9752 . . . . . . 7  |-  4  e.  RR
335, 15remulcli 8784 . . . . . . 7  |-  ( A  x.  C )  e.  RR
3432, 33remulcli 8784 . . . . . 6  |-  ( 4  x.  ( A  x.  C ) )  e.  RR
3531, 34, 23lesubadd2i 9266 . . . . 5  |-  ( ( ( B ^ 2 )  -  ( 4  x.  ( A  x.  C ) ) )  <_  0  <->  ( B ^ 2 )  <_ 
( ( 4  x.  ( A  x.  C
) )  +  0 ) )
3630, 35mpbi 201 . . . 4  |-  ( B ^ 2 )  <_ 
( ( 4  x.  ( A  x.  C
) )  +  0 )
3734recni 8782 . . . . 5  |-  ( 4  x.  ( A  x.  C ) )  e.  CC
3837addid1i 8932 . . . 4  |-  ( ( 4  x.  ( A  x.  C ) )  +  0 )  =  ( 4  x.  ( A  x.  C )
)
3936, 38breqtri 3986 . . 3  |-  ( B ^ 2 )  <_ 
( 4  x.  ( A  x.  C )
)
4010sqge0i 11122 . . . 4  |-  0  <_  ( B ^ 2 )
41 4pos 9765 . . . . . 6  |-  0  <  4
4223, 32, 41ltleii 8874 . . . . 5  |-  0  <_  4
43 hiidge0 21602 . . . . . . . 8  |-  ( G  e.  ~H  ->  0  <_  ( G  .ih  G
) )
442, 43ax-mp 10 . . . . . . 7  |-  0  <_  ( G  .ih  G
)
4544, 1breqtrri 3988 . . . . . 6  |-  0  <_  A
46 hiidge0 21602 . . . . . . . 8  |-  ( F  e.  ~H  ->  0  <_  ( F  .ih  F
) )
478, 46ax-mp 10 . . . . . . 7  |-  0  <_  ( F  .ih  F
)
4847, 12breqtrri 3988 . . . . . 6  |-  0  <_  C
495, 15mulge0i 9253 . . . . . 6  |-  ( ( 0  <_  A  /\  0  <_  C )  -> 
0  <_  ( A  x.  C ) )
5045, 48, 49mp2an 656 . . . . 5  |-  0  <_  ( A  x.  C
)
5132, 33mulge0i 9253 . . . . 5  |-  ( ( 0  <_  4  /\  0  <_  ( A  x.  C ) )  -> 
0  <_  ( 4  x.  ( A  x.  C ) ) )
5242, 50, 51mp2an 656 . . . 4  |-  0  <_  ( 4  x.  ( A  x.  C )
)
5331, 34sqrlei 11802 . . . 4  |-  ( ( 0  <_  ( B ^ 2 )  /\  0  <_  ( 4  x.  ( A  x.  C
) ) )  -> 
( ( B ^
2 )  <_  (
4  x.  ( A  x.  C ) )  <-> 
( sqr `  ( B ^ 2 ) )  <_  ( sqr `  (
4  x.  ( A  x.  C ) ) ) ) )
5440, 52, 53mp2an 656 . . 3  |-  ( ( B ^ 2 )  <_  ( 4  x.  ( A  x.  C
) )  <->  ( sqr `  ( B ^ 2 ) )  <_  ( sqr `  ( 4  x.  ( A  x.  C
) ) ) )
5539, 54mpbi 201 . 2  |-  ( sqr `  ( B ^ 2 ) )  <_  ( sqr `  ( 4  x.  ( A  x.  C
) ) )
5610absrei 11795 . 2  |-  ( abs `  B )  =  ( sqr `  ( B ^ 2 ) )
5732, 33, 42, 50sqrmulii 11800 . . 3  |-  ( sqr `  ( 4  x.  ( A  x.  C )
) )  =  ( ( sqr `  4
)  x.  ( sqr `  ( A  x.  C
) ) )
58 sqr4 11688 . . . 4  |-  ( sqr `  4 )  =  2
595, 15, 45, 48sqrmulii 11800 . . . 4  |-  ( sqr `  ( A  x.  C
) )  =  ( ( sqr `  A
)  x.  ( sqr `  C ) )
6058, 59oveq12i 5769 . . 3  |-  ( ( sqr `  4 )  x.  ( sqr `  ( A  x.  C )
) )  =  ( 2  x.  ( ( sqr `  A )  x.  ( sqr `  C
) ) )
6157, 60eqtr2i 2277 . 2  |-  ( 2  x.  ( ( sqr `  A )  x.  ( sqr `  C ) ) )  =  ( sqr `  ( 4  x.  ( A  x.  C )
) )
6255, 56, 613brtr4i 3991 1  |-  ( abs `  B )  <_  (
2  x.  ( ( sqr `  A )  x.  ( sqr `  C
) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    T. wtru 1312    = wceq 1619    e. wcel 1621   ifcif 3506   class class class wbr 3963   ` cfv 4638  (class class class)co 5757   CCcc 8668   RRcr 8669   0cc0 8670   1c1 8671    + caddc 8673    x. cmul 8675    <_ cle 8801    - cmin 8970   -ucneg 8971   2c2 9728   4c4 9730   ^cexp 11035   *ccj 11511   sqrcsqr 11648   abscabs 11649   ~Hchil 21424    .ih csp 21427
This theorem is referenced by:  normlem7  21620
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-hfvadd 21505  ax-hv0cl 21508  ax-hfvmul 21510  ax-hvmulass 21512  ax-hvmul0 21515  ax-hfi 21583  ax-his1 21586  ax-his2 21587  ax-his3 21588  ax-his4 21589
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-sup 7127  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-n0 9898  df-z 9957  df-uz 10163  df-rp 10287  df-seq 10978  df-exp 11036  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-hvsub 21476
  Copyright terms: Public domain W3C validator