HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpar2i Unicode version

Theorem normpar2i 22641
Description: Corollary of parallelogram law for norms. Part of Lemma 3.6 of [Beran] p. 100. (Contributed by NM, 5-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normpar2.1  |-  A  e. 
~H
normpar2.2  |-  B  e. 
~H
normpar2.3  |-  C  e. 
~H
Assertion
Ref Expression
normpar2i  |-  ( (
normh `  ( A  -h  B ) ) ^
2 )  =  ( ( ( 2  x.  ( ( normh `  ( A  -h  C ) ) ^ 2 ) )  +  ( 2  x.  ( ( normh `  ( B  -h  C ) ) ^ 2 ) ) )  -  ( (
normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 ) )

Proof of Theorem normpar2i
StepHypRef Expression
1 2re 10053 . . . . . 6  |-  2  e.  RR
2 normpar2.1 . . . . . . . . 9  |-  A  e. 
~H
3 normpar2.3 . . . . . . . . 9  |-  C  e. 
~H
42, 3hvsubcli 22507 . . . . . . . 8  |-  ( A  -h  C )  e. 
~H
54normcli 22616 . . . . . . 7  |-  ( normh `  ( A  -h  C
) )  e.  RR
65resqcli 11450 . . . . . 6  |-  ( (
normh `  ( A  -h  C ) ) ^
2 )  e.  RR
71, 6remulcli 9088 . . . . 5  |-  ( 2  x.  ( ( normh `  ( A  -h  C
) ) ^ 2 ) )  e.  RR
8 normpar2.2 . . . . . . . . 9  |-  B  e. 
~H
98, 3hvsubcli 22507 . . . . . . . 8  |-  ( B  -h  C )  e. 
~H
109normcli 22616 . . . . . . 7  |-  ( normh `  ( B  -h  C
) )  e.  RR
1110resqcli 11450 . . . . . 6  |-  ( (
normh `  ( B  -h  C ) ) ^
2 )  e.  RR
121, 11remulcli 9088 . . . . 5  |-  ( 2  x.  ( ( normh `  ( B  -h  C
) ) ^ 2 ) )  e.  RR
137, 12readdcli 9087 . . . 4  |-  ( ( 2  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )  +  ( 2  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) ) )  e.  RR
1413recni 9086 . . 3  |-  ( ( 2  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )  +  ( 2  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) ) )  e.  CC
152, 8hvaddcli 22504 . . . . . . 7  |-  ( A  +h  B )  e. 
~H
16 2cn 10054 . . . . . . . 8  |-  2  e.  CC
1716, 3hvmulcli 22500 . . . . . . 7  |-  ( 2  .h  C )  e. 
~H
1815, 17hvsubcli 22507 . . . . . 6  |-  ( ( A  +h  B )  -h  ( 2  .h  C ) )  e. 
~H
1918normcli 22616 . . . . 5  |-  ( normh `  ( ( A  +h  B )  -h  (
2  .h  C ) ) )  e.  RR
2019resqcli 11450 . . . 4  |-  ( (
normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 )  e.  RR
2120recni 9086 . . 3  |-  ( (
normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 )  e.  CC
222, 8hvsubcli 22507 . . . . . 6  |-  ( A  -h  B )  e. 
~H
2322normcli 22616 . . . . 5  |-  ( normh `  ( A  -h  B
) )  e.  RR
2423resqcli 11450 . . . 4  |-  ( (
normh `  ( A  -h  B ) ) ^
2 )  e.  RR
2524recni 9086 . . 3  |-  ( (
normh `  ( A  -h  B ) ) ^
2 )  e.  CC
26 4cn 10058 . . . . . 6  |-  4  e.  CC
276recni 9086 . . . . . 6  |-  ( (
normh `  ( A  -h  C ) ) ^
2 )  e.  CC
2826, 27mulcli 9079 . . . . 5  |-  ( 4  x.  ( ( normh `  ( A  -h  C
) ) ^ 2 ) )  e.  CC
2911recni 9086 . . . . . 6  |-  ( (
normh `  ( B  -h  C ) ) ^
2 )  e.  CC
3026, 29mulcli 9079 . . . . 5  |-  ( 4  x.  ( ( normh `  ( B  -h  C
) ) ^ 2 ) )  e.  CC
31 2ne0 10067 . . . . 5  |-  2  =/=  0
3228, 30, 16, 31divdiri 9755 . . . 4  |-  ( ( ( 4  x.  (
( normh `  ( A  -h  C ) ) ^
2 ) )  +  ( 4  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) ) )  /  2 )  =  ( ( ( 4  x.  ( ( normh `  ( A  -h  C
) ) ^ 2 ) )  /  2
)  +  ( ( 4  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )  / 
2 ) )
3328, 30addcomi 9241 . . . . . . . 8  |-  ( ( 4  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )  +  ( 4  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) ) )  =  ( ( 4  x.  ( ( normh `  ( B  -h  C
) ) ^ 2 ) )  +  ( 4  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) ) )
34 neg1cn 10051 . . . . . . . . . . . . . . . . 17  |-  -u 1  e.  CC
3534, 17hvmulcli 22500 . . . . . . . . . . . . . . . 16  |-  ( -u
1  .h  ( 2  .h  C ) )  e.  ~H
3634, 22hvmulcli 22500 . . . . . . . . . . . . . . . 16  |-  ( -u
1  .h  ( A  -h  B ) )  e.  ~H
3715, 35, 36hvadd32i 22539 . . . . . . . . . . . . . . 15  |-  ( ( ( A  +h  B
)  +h  ( -u
1  .h  ( 2  .h  C ) ) )  +h  ( -u
1  .h  ( A  -h  B ) ) )  =  ( ( ( A  +h  B
)  +h  ( -u
1  .h  ( A  -h  B ) ) )  +h  ( -u
1  .h  ( 2  .h  C ) ) )
3815, 17hvsubvali 22506 . . . . . . . . . . . . . . . 16  |-  ( ( A  +h  B )  -h  ( 2  .h  C ) )  =  ( ( A  +h  B )  +h  ( -u 1  .h  ( 2  .h  C ) ) )
3938oveq1i 6077 . . . . . . . . . . . . . . 15  |-  ( ( ( A  +h  B
)  -h  ( 2  .h  C ) )  +h  ( -u 1  .h  ( A  -h  B
) ) )  =  ( ( ( A  +h  B )  +h  ( -u 1  .h  ( 2  .h  C
) ) )  +h  ( -u 1  .h  ( A  -h  B
) ) )
4016, 8hvmulcli 22500 . . . . . . . . . . . . . . . . 17  |-  ( 2  .h  B )  e. 
~H
4140, 17hvsubvali 22506 . . . . . . . . . . . . . . . 16  |-  ( ( 2  .h  B )  -h  ( 2  .h  C ) )  =  ( ( 2  .h  B )  +h  ( -u 1  .h  ( 2  .h  C ) ) )
422, 8hvcomi 22505 . . . . . . . . . . . . . . . . . . 19  |-  ( A  +h  B )  =  ( B  +h  A
)
432, 8hvnegdii 22547 . . . . . . . . . . . . . . . . . . 19  |-  ( -u
1  .h  ( A  -h  B ) )  =  ( B  -h  A )
4442, 43oveq12i 6079 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  +h  B )  +h  ( -u 1  .h  ( A  -h  B
) ) )  =  ( ( B  +h  A )  +h  ( B  -h  A ) )
458, 2hvsubcan2i 22549 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  +h  A )  +h  ( B  -h  A ) )  =  ( 2  .h  B
)
4644, 45eqtri 2450 . . . . . . . . . . . . . . . . 17  |-  ( ( A  +h  B )  +h  ( -u 1  .h  ( A  -h  B
) ) )  =  ( 2  .h  B
)
4746oveq1i 6077 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  +h  B
)  +h  ( -u
1  .h  ( A  -h  B ) ) )  +h  ( -u
1  .h  ( 2  .h  C ) ) )  =  ( ( 2  .h  B )  +h  ( -u 1  .h  ( 2  .h  C
) ) )
4841, 47eqtr4i 2453 . . . . . . . . . . . . . . 15  |-  ( ( 2  .h  B )  -h  ( 2  .h  C ) )  =  ( ( ( A  +h  B )  +h  ( -u 1  .h  ( A  -h  B
) ) )  +h  ( -u 1  .h  ( 2  .h  C
) ) )
4937, 39, 483eqtr4i 2460 . . . . . . . . . . . . . 14  |-  ( ( ( A  +h  B
)  -h  ( 2  .h  C ) )  +h  ( -u 1  .h  ( A  -h  B
) ) )  =  ( ( 2  .h  B )  -h  (
2  .h  C ) )
5018, 22hvsubvali 22506 . . . . . . . . . . . . . 14  |-  ( ( ( A  +h  B
)  -h  ( 2  .h  C ) )  -h  ( A  -h  B ) )  =  ( ( ( A  +h  B )  -h  ( 2  .h  C
) )  +h  ( -u 1  .h  ( A  -h  B ) ) )
5116, 8, 3hvsubdistr1i 22537 . . . . . . . . . . . . . 14  |-  ( 2  .h  ( B  -h  C ) )  =  ( ( 2  .h  B )  -h  (
2  .h  C ) )
5249, 50, 513eqtr4i 2460 . . . . . . . . . . . . 13  |-  ( ( ( A  +h  B
)  -h  ( 2  .h  C ) )  -h  ( A  -h  B ) )  =  ( 2  .h  ( B  -h  C ) )
5352fveq2i 5717 . . . . . . . . . . . 12  |-  ( normh `  ( ( ( A  +h  B )  -h  ( 2  .h  C
) )  -h  ( A  -h  B ) ) )  =  ( normh `  ( 2  .h  ( B  -h  C ) ) )
5416, 9norm-iii-i 22624 . . . . . . . . . . . 12  |-  ( normh `  ( 2  .h  ( B  -h  C ) ) )  =  ( ( abs `  2 )  x.  ( normh `  ( B  -h  C ) ) )
55 0re 9075 . . . . . . . . . . . . . . 15  |-  0  e.  RR
56 2pos 10066 . . . . . . . . . . . . . . 15  |-  0  <  2
5755, 1, 56ltleii 9180 . . . . . . . . . . . . . 14  |-  0  <_  2
581absidi 12164 . . . . . . . . . . . . . 14  |-  ( 0  <_  2  ->  ( abs `  2 )  =  2 )
5957, 58ax-mp 8 . . . . . . . . . . . . 13  |-  ( abs `  2 )  =  2
6059oveq1i 6077 . . . . . . . . . . . 12  |-  ( ( abs `  2 )  x.  ( normh `  ( B  -h  C ) ) )  =  ( 2  x.  ( normh `  ( B  -h  C ) ) )
6153, 54, 603eqtri 2454 . . . . . . . . . . 11  |-  ( normh `  ( ( ( A  +h  B )  -h  ( 2  .h  C
) )  -h  ( A  -h  B ) ) )  =  ( 2  x.  ( normh `  ( B  -h  C ) ) )
6261oveq1i 6077 . . . . . . . . . 10  |-  ( (
normh `  ( ( ( A  +h  B )  -h  ( 2  .h  C ) )  -h  ( A  -h  B
) ) ) ^
2 )  =  ( ( 2  x.  ( normh `  ( B  -h  C ) ) ) ^ 2 )
6310recni 9086 . . . . . . . . . . 11  |-  ( normh `  ( B  -h  C
) )  e.  CC
6416, 63sqmuli 11448 . . . . . . . . . 10  |-  ( ( 2  x.  ( normh `  ( B  -h  C
) ) ) ^
2 )  =  ( ( 2 ^ 2 )  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )
65 sq2 11460 . . . . . . . . . . 11  |-  ( 2 ^ 2 )  =  4
6665oveq1i 6077 . . . . . . . . . 10  |-  ( ( 2 ^ 2 )  x.  ( ( normh `  ( B  -h  C
) ) ^ 2 ) )  =  ( 4  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )
6762, 64, 663eqtri 2454 . . . . . . . . 9  |-  ( (
normh `  ( ( ( A  +h  B )  -h  ( 2  .h  C ) )  -h  ( A  -h  B
) ) ) ^
2 )  =  ( 4  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )
682, 8hvsubcan2i 22549 . . . . . . . . . . . . . . . 16  |-  ( ( A  +h  B )  +h  ( A  -h  B ) )  =  ( 2  .h  A
)
6968oveq1i 6077 . . . . . . . . . . . . . . 15  |-  ( ( ( A  +h  B
)  +h  ( A  -h  B ) )  +h  ( -u 1  .h  ( 2  .h  C
) ) )  =  ( ( 2  .h  A )  +h  ( -u 1  .h  ( 2  .h  C ) ) )
7015, 35, 22hvadd32i 22539 . . . . . . . . . . . . . . 15  |-  ( ( ( A  +h  B
)  +h  ( -u
1  .h  ( 2  .h  C ) ) )  +h  ( A  -h  B ) )  =  ( ( ( A  +h  B )  +h  ( A  -h  B ) )  +h  ( -u 1  .h  ( 2  .h  C
) ) )
7116, 2hvmulcli 22500 . . . . . . . . . . . . . . . 16  |-  ( 2  .h  A )  e. 
~H
7271, 17hvsubvali 22506 . . . . . . . . . . . . . . 15  |-  ( ( 2  .h  A )  -h  ( 2  .h  C ) )  =  ( ( 2  .h  A )  +h  ( -u 1  .h  ( 2  .h  C ) ) )
7369, 70, 723eqtr4i 2460 . . . . . . . . . . . . . 14  |-  ( ( ( A  +h  B
)  +h  ( -u
1  .h  ( 2  .h  C ) ) )  +h  ( A  -h  B ) )  =  ( ( 2  .h  A )  -h  ( 2  .h  C
) )
7438oveq1i 6077 . . . . . . . . . . . . . 14  |-  ( ( ( A  +h  B
)  -h  ( 2  .h  C ) )  +h  ( A  -h  B ) )  =  ( ( ( A  +h  B )  +h  ( -u 1  .h  ( 2  .h  C
) ) )  +h  ( A  -h  B
) )
7516, 2, 3hvsubdistr1i 22537 . . . . . . . . . . . . . 14  |-  ( 2  .h  ( A  -h  C ) )  =  ( ( 2  .h  A )  -h  (
2  .h  C ) )
7673, 74, 753eqtr4i 2460 . . . . . . . . . . . . 13  |-  ( ( ( A  +h  B
)  -h  ( 2  .h  C ) )  +h  ( A  -h  B ) )  =  ( 2  .h  ( A  -h  C ) )
7776fveq2i 5717 . . . . . . . . . . . 12  |-  ( normh `  ( ( ( A  +h  B )  -h  ( 2  .h  C
) )  +h  ( A  -h  B ) ) )  =  ( normh `  ( 2  .h  ( A  -h  C ) ) )
7816, 4norm-iii-i 22624 . . . . . . . . . . . 12  |-  ( normh `  ( 2  .h  ( A  -h  C ) ) )  =  ( ( abs `  2 )  x.  ( normh `  ( A  -h  C ) ) )
7959oveq1i 6077 . . . . . . . . . . . 12  |-  ( ( abs `  2 )  x.  ( normh `  ( A  -h  C ) ) )  =  ( 2  x.  ( normh `  ( A  -h  C ) ) )
8077, 78, 793eqtri 2454 . . . . . . . . . . 11  |-  ( normh `  ( ( ( A  +h  B )  -h  ( 2  .h  C
) )  +h  ( A  -h  B ) ) )  =  ( 2  x.  ( normh `  ( A  -h  C ) ) )
8180oveq1i 6077 . . . . . . . . . 10  |-  ( (
normh `  ( ( ( A  +h  B )  -h  ( 2  .h  C ) )  +h  ( A  -h  B
) ) ) ^
2 )  =  ( ( 2  x.  ( normh `  ( A  -h  C ) ) ) ^ 2 )
825recni 9086 . . . . . . . . . . 11  |-  ( normh `  ( A  -h  C
) )  e.  CC
8316, 82sqmuli 11448 . . . . . . . . . 10  |-  ( ( 2  x.  ( normh `  ( A  -h  C
) ) ) ^
2 )  =  ( ( 2 ^ 2 )  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )
8465oveq1i 6077 . . . . . . . . . 10  |-  ( ( 2 ^ 2 )  x.  ( ( normh `  ( A  -h  C
) ) ^ 2 ) )  =  ( 4  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )
8581, 83, 843eqtri 2454 . . . . . . . . 9  |-  ( (
normh `  ( ( ( A  +h  B )  -h  ( 2  .h  C ) )  +h  ( A  -h  B
) ) ) ^
2 )  =  ( 4  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )
8667, 85oveq12i 6079 . . . . . . . 8  |-  ( ( ( normh `  ( (
( A  +h  B
)  -h  ( 2  .h  C ) )  -h  ( A  -h  B ) ) ) ^ 2 )  +  ( ( normh `  (
( ( A  +h  B )  -h  (
2  .h  C ) )  +h  ( A  -h  B ) ) ) ^ 2 ) )  =  ( ( 4  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )  +  ( 4  x.  (
( normh `  ( A  -h  C ) ) ^
2 ) ) )
8733, 86eqtr4i 2453 . . . . . . 7  |-  ( ( 4  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )  +  ( 4  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) ) )  =  ( ( (
normh `  ( ( ( A  +h  B )  -h  ( 2  .h  C ) )  -h  ( A  -h  B
) ) ) ^
2 )  +  ( ( normh `  ( (
( A  +h  B
)  -h  ( 2  .h  C ) )  +h  ( A  -h  B ) ) ) ^ 2 ) )
8818, 22normpari 22639 . . . . . . 7  |-  ( ( ( normh `  ( (
( A  +h  B
)  -h  ( 2  .h  C ) )  -h  ( A  -h  B ) ) ) ^ 2 )  +  ( ( normh `  (
( ( A  +h  B )  -h  (
2  .h  C ) )  +h  ( A  -h  B ) ) ) ^ 2 ) )  =  ( ( 2  x.  ( (
normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 ) )  +  ( 2  x.  (
( normh `  ( A  -h  B ) ) ^
2 ) ) )
8987, 88eqtri 2450 . . . . . 6  |-  ( ( 4  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )  +  ( 4  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) ) )  =  ( ( 2  x.  ( ( normh `  ( ( A  +h  B )  -h  (
2  .h  C ) ) ) ^ 2 ) )  +  ( 2  x.  ( (
normh `  ( A  -h  B ) ) ^
2 ) ) )
9089oveq1i 6077 . . . . 5  |-  ( ( ( 4  x.  (
( normh `  ( A  -h  C ) ) ^
2 ) )  +  ( 4  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) ) )  /  2 )  =  ( ( ( 2  x.  ( ( normh `  ( ( A  +h  B )  -h  (
2  .h  C ) ) ) ^ 2 ) )  +  ( 2  x.  ( (
normh `  ( A  -h  B ) ) ^
2 ) ) )  /  2 )
9116, 21mulcli 9079 . . . . . 6  |-  ( 2  x.  ( ( normh `  ( ( A  +h  B )  -h  (
2  .h  C ) ) ) ^ 2 ) )  e.  CC
9216, 25mulcli 9079 . . . . . 6  |-  ( 2  x.  ( ( normh `  ( A  -h  B
) ) ^ 2 ) )  e.  CC
9391, 92, 16, 31divdiri 9755 . . . . 5  |-  ( ( ( 2  x.  (
( normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 ) )  +  ( 2  x.  (
( normh `  ( A  -h  B ) ) ^
2 ) ) )  /  2 )  =  ( ( ( 2  x.  ( ( normh `  ( ( A  +h  B )  -h  (
2  .h  C ) ) ) ^ 2 ) )  /  2
)  +  ( ( 2  x.  ( (
normh `  ( A  -h  B ) ) ^
2 ) )  / 
2 ) )
9421, 16, 31divcan3i 9744 . . . . . 6  |-  ( ( 2  x.  ( (
normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 ) )  / 
2 )  =  ( ( normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 )
9525, 16, 31divcan3i 9744 . . . . . 6  |-  ( ( 2  x.  ( (
normh `  ( A  -h  B ) ) ^
2 ) )  / 
2 )  =  ( ( normh `  ( A  -h  B ) ) ^
2 )
9694, 95oveq12i 6079 . . . . 5  |-  ( ( ( 2  x.  (
( normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 ) )  / 
2 )  +  ( ( 2  x.  (
( normh `  ( A  -h  B ) ) ^
2 ) )  / 
2 ) )  =  ( ( ( normh `  ( ( A  +h  B )  -h  (
2  .h  C ) ) ) ^ 2 )  +  ( (
normh `  ( A  -h  B ) ) ^
2 ) )
9790, 93, 963eqtri 2454 . . . 4  |-  ( ( ( 4  x.  (
( normh `  ( A  -h  C ) ) ^
2 ) )  +  ( 4  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) ) )  /  2 )  =  ( ( ( normh `  ( ( A  +h  B )  -h  (
2  .h  C ) ) ) ^ 2 )  +  ( (
normh `  ( A  -h  B ) ) ^
2 ) )
9826, 27, 16, 31div23i 9756 . . . . . 6  |-  ( ( 4  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )  / 
2 )  =  ( ( 4  /  2
)  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )
99 4d2e2 10116 . . . . . . 7  |-  ( 4  /  2 )  =  2
10099oveq1i 6077 . . . . . 6  |-  ( ( 4  /  2 )  x.  ( ( normh `  ( A  -h  C
) ) ^ 2 ) )  =  ( 2  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )
10198, 100eqtri 2450 . . . . 5  |-  ( ( 4  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )  / 
2 )  =  ( 2  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )
10226, 29, 16, 31div23i 9756 . . . . . 6  |-  ( ( 4  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )  / 
2 )  =  ( ( 4  /  2
)  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )
10399oveq1i 6077 . . . . . 6  |-  ( ( 4  /  2 )  x.  ( ( normh `  ( B  -h  C
) ) ^ 2 ) )  =  ( 2  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )
104102, 103eqtri 2450 . . . . 5  |-  ( ( 4  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )  / 
2 )  =  ( 2  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )
105101, 104oveq12i 6079 . . . 4  |-  ( ( ( 4  x.  (
( normh `  ( A  -h  C ) ) ^
2 ) )  / 
2 )  +  ( ( 4  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) )  / 
2 ) )  =  ( ( 2  x.  ( ( normh `  ( A  -h  C ) ) ^ 2 ) )  +  ( 2  x.  ( ( normh `  ( B  -h  C ) ) ^ 2 ) ) )
10632, 97, 1053eqtr3i 2458 . . 3  |-  ( ( ( normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 )  +  ( ( normh `  ( A  -h  B ) ) ^
2 ) )  =  ( ( 2  x.  ( ( normh `  ( A  -h  C ) ) ^ 2 ) )  +  ( 2  x.  ( ( normh `  ( B  -h  C ) ) ^ 2 ) ) )
10714, 21, 25, 106subaddrii 9373 . 2  |-  ( ( ( 2  x.  (
( normh `  ( A  -h  C ) ) ^
2 ) )  +  ( 2  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) ) )  -  ( ( normh `  ( ( A  +h  B )  -h  (
2  .h  C ) ) ) ^ 2 ) )  =  ( ( normh `  ( A  -h  B ) ) ^
2 )
108107eqcomi 2434 1  |-  ( (
normh `  ( A  -h  B ) ) ^
2 )  =  ( ( ( 2  x.  ( ( normh `  ( A  -h  C ) ) ^ 2 ) )  +  ( 2  x.  ( ( normh `  ( B  -h  C ) ) ^ 2 ) ) )  -  ( (
normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725   class class class wbr 4199   ` cfv 5440  (class class class)co 6067   0cc0 8974   1c1 8975    + caddc 8977    x. cmul 8979    <_ cle 9105    - cmin 9275   -ucneg 9276    / cdiv 9661   2c2 10033   4c4 10035   ^cexp 11365   abscabs 12022   ~Hchil 22405    +h cva 22406    .h csm 22407   normhcno 22409    -h cmv 22411
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687  ax-cnex 9030  ax-resscn 9031  ax-1cn 9032  ax-icn 9033  ax-addcl 9034  ax-addrcl 9035  ax-mulcl 9036  ax-mulrcl 9037  ax-mulcom 9038  ax-addass 9039  ax-mulass 9040  ax-distr 9041  ax-i2m1 9042  ax-1ne0 9043  ax-1rid 9044  ax-rnegex 9045  ax-rrecex 9046  ax-cnre 9047  ax-pre-lttri 9048  ax-pre-lttrn 9049  ax-pre-ltadd 9050  ax-pre-mulgt0 9051  ax-pre-sup 9052  ax-hfvadd 22486  ax-hvcom 22487  ax-hvass 22488  ax-hv0cl 22489  ax-hvaddid 22490  ax-hfvmul 22491  ax-hvmulid 22492  ax-hvmulass 22493  ax-hvdistr1 22494  ax-hvdistr2 22495  ax-hvmul0 22496  ax-hfi 22564  ax-his1 22567  ax-his2 22568  ax-his3 22569  ax-his4 22570
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rmo 2700  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-we 4530  df-ord 4571  df-on 4572  df-lim 4573  df-suc 4574  df-om 4832  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-2nd 6336  df-riota 6535  df-recs 6619  df-rdg 6654  df-er 6891  df-en 7096  df-dom 7097  df-sdom 7098  df-sup 7432  df-pnf 9106  df-mnf 9107  df-xr 9108  df-ltxr 9109  df-le 9110  df-sub 9277  df-neg 9278  df-div 9662  df-nn 9985  df-2 10042  df-3 10043  df-4 10044  df-n0 10206  df-z 10267  df-uz 10473  df-rp 10597  df-seq 11307  df-exp 11366  df-cj 11887  df-re 11888  df-im 11889  df-sqr 12023  df-abs 12024  df-hnorm 22454  df-hvsub 22457
  Copyright terms: Public domain W3C validator