HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpari Unicode version

Theorem normpari 22504
Description: Parallelogram law for norms. Remark 3.4(B) of [Beran] p. 98. (Contributed by NM, 21-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normpar.1  |-  A  e. 
~H
normpar.2  |-  B  e. 
~H
Assertion
Ref Expression
normpari  |-  ( ( ( normh `  ( A  -h  B ) ) ^
2 )  +  ( ( normh `  ( A  +h  B ) ) ^
2 ) )  =  ( ( 2  x.  ( ( normh `  A
) ^ 2 ) )  +  ( 2  x.  ( ( normh `  B ) ^ 2 ) ) )

Proof of Theorem normpari
StepHypRef Expression
1 normpar.1 . . . . 5  |-  A  e. 
~H
2 normpar.2 . . . . 5  |-  B  e. 
~H
31, 2hvsubcli 22372 . . . 4  |-  ( A  -h  B )  e. 
~H
43normsqi 22482 . . 3  |-  ( (
normh `  ( A  -h  B ) ) ^
2 )  =  ( ( A  -h  B
)  .ih  ( A  -h  B ) )
51, 2hvaddcli 22369 . . . 4  |-  ( A  +h  B )  e. 
~H
65normsqi 22482 . . 3  |-  ( (
normh `  ( A  +h  B ) ) ^
2 )  =  ( ( A  +h  B
)  .ih  ( A  +h  B ) )
74, 6oveq12i 6032 . 2  |-  ( ( ( normh `  ( A  -h  B ) ) ^
2 )  +  ( ( normh `  ( A  +h  B ) ) ^
2 ) )  =  ( ( ( A  -h  B )  .ih  ( A  -h  B
) )  +  ( ( A  +h  B
)  .ih  ( A  +h  B ) ) )
81normsqi 22482 . . . . . 6  |-  ( (
normh `  A ) ^
2 )  =  ( A  .ih  A )
98oveq2i 6031 . . . . 5  |-  ( 2  x.  ( ( normh `  A ) ^ 2 ) )  =  ( 2  x.  ( A 
.ih  A ) )
101, 1hicli 22431 . . . . . 6  |-  ( A 
.ih  A )  e.  CC
11102timesi 10033 . . . . 5  |-  ( 2  x.  ( A  .ih  A ) )  =  ( ( A  .ih  A
)  +  ( A 
.ih  A ) )
129, 11eqtri 2407 . . . 4  |-  ( 2  x.  ( ( normh `  A ) ^ 2 ) )  =  ( ( A  .ih  A
)  +  ( A 
.ih  A ) )
132normsqi 22482 . . . . . 6  |-  ( (
normh `  B ) ^
2 )  =  ( B  .ih  B )
1413oveq2i 6031 . . . . 5  |-  ( 2  x.  ( ( normh `  B ) ^ 2 ) )  =  ( 2  x.  ( B 
.ih  B ) )
152, 2hicli 22431 . . . . . 6  |-  ( B 
.ih  B )  e.  CC
16152timesi 10033 . . . . 5  |-  ( 2  x.  ( B  .ih  B ) )  =  ( ( B  .ih  B
)  +  ( B 
.ih  B ) )
1714, 16eqtri 2407 . . . 4  |-  ( 2  x.  ( ( normh `  B ) ^ 2 ) )  =  ( ( B  .ih  B
)  +  ( B 
.ih  B ) )
1812, 17oveq12i 6032 . . 3  |-  ( ( 2  x.  ( (
normh `  A ) ^
2 ) )  +  ( 2  x.  (
( normh `  B ) ^ 2 ) ) )  =  ( ( ( A  .ih  A
)  +  ( A 
.ih  A ) )  +  ( ( B 
.ih  B )  +  ( B  .ih  B
) ) )
191, 2, 1, 2normlem9 22468 . . . . . 6  |-  ( ( A  -h  B ) 
.ih  ( A  -h  B ) )  =  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  -  (
( A  .ih  B
)  +  ( B 
.ih  A ) ) )
2010, 15addcli 9027 . . . . . . 7  |-  ( ( A  .ih  A )  +  ( B  .ih  B ) )  e.  CC
211, 2hicli 22431 . . . . . . . 8  |-  ( A 
.ih  B )  e.  CC
222, 1hicli 22431 . . . . . . . 8  |-  ( B 
.ih  A )  e.  CC
2321, 22addcli 9027 . . . . . . 7  |-  ( ( A  .ih  B )  +  ( B  .ih  A ) )  e.  CC
2420, 23negsubi 9310 . . . . . 6  |-  ( ( ( A  .ih  A
)  +  ( B 
.ih  B ) )  +  -u ( ( A 
.ih  B )  +  ( B  .ih  A
) ) )  =  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  -  (
( A  .ih  B
)  +  ( B 
.ih  A ) ) )
2519, 24eqtr4i 2410 . . . . 5  |-  ( ( A  -h  B ) 
.ih  ( A  -h  B ) )  =  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  -u ( ( A  .ih  B )  +  ( B 
.ih  A ) ) )
261, 2, 1, 2normlem8 22467 . . . . 5  |-  ( ( A  +h  B ) 
.ih  ( A  +h  B ) )  =  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( ( A  .ih  B
)  +  ( B 
.ih  A ) ) )
2725, 26oveq12i 6032 . . . 4  |-  ( ( ( A  -h  B
)  .ih  ( A  -h  B ) )  +  ( ( A  +h  B )  .ih  ( A  +h  B ) ) )  =  ( ( ( ( A  .ih  A )  +  ( B 
.ih  B ) )  +  -u ( ( A 
.ih  B )  +  ( B  .ih  A
) ) )  +  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( ( A  .ih  B
)  +  ( B 
.ih  A ) ) ) )
2823negcli 9300 . . . . 5  |-  -u (
( A  .ih  B
)  +  ( B 
.ih  A ) )  e.  CC
2920, 28, 20, 23add42i 9218 . . . 4  |-  ( ( ( ( A  .ih  A )  +  ( B 
.ih  B ) )  +  -u ( ( A 
.ih  B )  +  ( B  .ih  A
) ) )  +  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( ( A  .ih  B
)  +  ( B 
.ih  A ) ) ) )  =  ( ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( ( A  .ih  A
)  +  ( B 
.ih  B ) ) )  +  ( ( ( A  .ih  B
)  +  ( B 
.ih  A ) )  +  -u ( ( A 
.ih  B )  +  ( B  .ih  A
) ) ) )
3023negidi 9301 . . . . . 6  |-  ( ( ( A  .ih  B
)  +  ( B 
.ih  A ) )  +  -u ( ( A 
.ih  B )  +  ( B  .ih  A
) ) )  =  0
3130oveq2i 6031 . . . . 5  |-  ( ( ( ( A  .ih  A )  +  ( B 
.ih  B ) )  +  ( ( A 
.ih  A )  +  ( B  .ih  B
) ) )  +  ( ( ( A 
.ih  B )  +  ( B  .ih  A
) )  +  -u ( ( A  .ih  B )  +  ( B 
.ih  A ) ) ) )  =  ( ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( ( A  .ih  A
)  +  ( B 
.ih  B ) ) )  +  0 )
3220, 20addcli 9027 . . . . . 6  |-  ( ( ( A  .ih  A
)  +  ( B 
.ih  B ) )  +  ( ( A 
.ih  A )  +  ( B  .ih  B
) ) )  e.  CC
3332addid1i 9185 . . . . 5  |-  ( ( ( ( A  .ih  A )  +  ( B 
.ih  B ) )  +  ( ( A 
.ih  A )  +  ( B  .ih  B
) ) )  +  0 )  =  ( ( ( A  .ih  A )  +  ( B 
.ih  B ) )  +  ( ( A 
.ih  A )  +  ( B  .ih  B
) ) )
3410, 15, 10, 15add4i 9217 . . . . 5  |-  ( ( ( A  .ih  A
)  +  ( B 
.ih  B ) )  +  ( ( A 
.ih  A )  +  ( B  .ih  B
) ) )  =  ( ( ( A 
.ih  A )  +  ( A  .ih  A
) )  +  ( ( B  .ih  B
)  +  ( B 
.ih  B ) ) )
3531, 33, 343eqtri 2411 . . . 4  |-  ( ( ( ( A  .ih  A )  +  ( B 
.ih  B ) )  +  ( ( A 
.ih  A )  +  ( B  .ih  B
) ) )  +  ( ( ( A 
.ih  B )  +  ( B  .ih  A
) )  +  -u ( ( A  .ih  B )  +  ( B 
.ih  A ) ) ) )  =  ( ( ( A  .ih  A )  +  ( A 
.ih  A ) )  +  ( ( B 
.ih  B )  +  ( B  .ih  B
) ) )
3627, 29, 353eqtri 2411 . . 3  |-  ( ( ( A  -h  B
)  .ih  ( A  -h  B ) )  +  ( ( A  +h  B )  .ih  ( A  +h  B ) ) )  =  ( ( ( A  .ih  A
)  +  ( A 
.ih  A ) )  +  ( ( B 
.ih  B )  +  ( B  .ih  B
) ) )
3718, 36eqtr4i 2410 . 2  |-  ( ( 2  x.  ( (
normh `  A ) ^
2 ) )  +  ( 2  x.  (
( normh `  B ) ^ 2 ) ) )  =  ( ( ( A  -h  B
)  .ih  ( A  -h  B ) )  +  ( ( A  +h  B )  .ih  ( A  +h  B ) ) )
387, 37eqtr4i 2410 1  |-  ( ( ( normh `  ( A  -h  B ) ) ^
2 )  +  ( ( normh `  ( A  +h  B ) ) ^
2 ) )  =  ( ( 2  x.  ( ( normh `  A
) ^ 2 ) )  +  ( 2  x.  ( ( normh `  B ) ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1649    e. wcel 1717   ` cfv 5394  (class class class)co 6020   0cc0 8923    + caddc 8926    x. cmul 8928    - cmin 9223   -ucneg 9224   2c2 9981   ^cexp 11309   ~Hchil 22270    +h cva 22271    .ih csp 22273   normhcno 22274    -h cmv 22276
This theorem is referenced by:  normpar  22505  normpar2i  22506
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-hfvadd 22351  ax-hv0cl 22354  ax-hfvmul 22356  ax-hvmul0 22361  ax-hfi 22429  ax-his1 22432  ax-his2 22433  ax-his3 22434  ax-his4 22435
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-sup 7381  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-n0 10154  df-z 10215  df-uz 10421  df-rp 10545  df-seq 11251  df-exp 11310  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-hnorm 22319  df-hvsub 22322
  Copyright terms: Public domain W3C validator