Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nss Unicode version

Theorem nss 3366
 Description: Negation of subclass relationship. Exercise 13 of [TakeutiZaring] p. 18. (Contributed by NM, 25-Feb-1996.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
nss
Distinct variable groups:   ,   ,

Proof of Theorem nss
StepHypRef Expression
1 exanali 1592 . . 3
2 dfss2 3297 . . 3
31, 2xchbinxr 303 . 2
43bicomi 194 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 177   wa 359  wal 1546  wex 1547   wcel 1721   wss 3280 This theorem is referenced by:  grur1  8651  psslinpr  8864  reclem2pr  8881  mreexexlem2d  13825  prmcyg  15458  filcon  17868  alexsubALTlem4  18034  wilthlem2  20805  shne0i  22903  erdszelem10  24839  fundmpss  25336 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-in 3287  df-ss 3294
 Copyright terms: Public domain W3C validator