MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nthruc Structured version   Unicode version

Theorem nthruc 12842
Description: The sequence  NN,  ZZ,  QQ,  RR, and  CC forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to  ZZ but not  NN, one-half belongs to  QQ but not  ZZ, the square root of 2 belongs to  RR but not  QQ, and finally that the imaginary number  _i belongs to  CC but not  RR. See nthruz 12843 for a further refinement. (Contributed by NM, 12-Jan-2002.)
Assertion
Ref Expression
nthruc  |-  ( ( NN  C.  ZZ  /\  ZZ  C.  QQ )  /\  ( QQ  C.  RR  /\  RR  C.  CC ) )

Proof of Theorem nthruc
StepHypRef Expression
1 nnssz 10293 . . . 4  |-  NN  C_  ZZ
2 0z 10285 . . . . 5  |-  0  e.  ZZ
3 0nnn 10023 . . . . 5  |-  -.  0  e.  NN
42, 3pm3.2i 442 . . . 4  |-  ( 0  e.  ZZ  /\  -.  0  e.  NN )
5 ssnelpss 3683 . . . 4  |-  ( NN  C_  ZZ  ->  ( (
0  e.  ZZ  /\  -.  0  e.  NN )  ->  NN  C.  ZZ ) )
61, 4, 5mp2 9 . . 3  |-  NN  C.  ZZ
7 zssq 10573 . . . 4  |-  ZZ  C_  QQ
8 1z 10303 . . . . . 6  |-  1  e.  ZZ
9 2nn 10125 . . . . . 6  |-  2  e.  NN
10 znq 10570 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  2  e.  NN )  ->  ( 1  /  2
)  e.  QQ )
118, 9, 10mp2an 654 . . . . 5  |-  ( 1  /  2 )  e.  QQ
12 halfnz 10340 . . . . 5  |-  -.  (
1  /  2 )  e.  ZZ
1311, 12pm3.2i 442 . . . 4  |-  ( ( 1  /  2 )  e.  QQ  /\  -.  ( 1  /  2
)  e.  ZZ )
14 ssnelpss 3683 . . . 4  |-  ( ZZ  C_  QQ  ->  ( (
( 1  /  2
)  e.  QQ  /\  -.  ( 1  /  2
)  e.  ZZ )  ->  ZZ  C.  QQ ) )
157, 13, 14mp2 9 . . 3  |-  ZZ  C.  QQ
166, 15pm3.2i 442 . 2  |-  ( NN 
C.  ZZ  /\  ZZ  C.  QQ )
17 qssre 10576 . . . 4  |-  QQ  C_  RR
18 sqr2re 12841 . . . . 5  |-  ( sqr `  2 )  e.  RR
19 sqr2irr 12840 . . . . . 6  |-  ( sqr `  2 )  e/  QQ
20 df-nel 2601 . . . . . 6  |-  ( ( sqr `  2 )  e/  QQ  <->  -.  ( sqr `  2 )  e.  QQ )
2119, 20mpbi 200 . . . . 5  |-  -.  ( sqr `  2 )  e.  QQ
2218, 21pm3.2i 442 . . . 4  |-  ( ( sqr `  2 )  e.  RR  /\  -.  ( sqr `  2 )  e.  QQ )
23 ssnelpss 3683 . . . 4  |-  ( QQ  C_  RR  ->  ( (
( sqr `  2
)  e.  RR  /\  -.  ( sqr `  2
)  e.  QQ )  ->  QQ  C.  RR ) )
2417, 22, 23mp2 9 . . 3  |-  QQ  C.  RR
25 ax-resscn 9039 . . . 4  |-  RR  C_  CC
26 ax-icn 9041 . . . . 5  |-  _i  e.  CC
27 inelr 9982 . . . . 5  |-  -.  _i  e.  RR
2826, 27pm3.2i 442 . . . 4  |-  ( _i  e.  CC  /\  -.  _i  e.  RR )
29 ssnelpss 3683 . . . 4  |-  ( RR  C_  CC  ->  ( (
_i  e.  CC  /\  -.  _i  e.  RR )  ->  RR  C.  CC ) )
3025, 28, 29mp2 9 . . 3  |-  RR  C.  CC
3124, 30pm3.2i 442 . 2  |-  ( QQ 
C.  RR  /\  RR  C.  CC )
3216, 31pm3.2i 442 1  |-  ( ( NN  C.  ZZ  /\  ZZ  C.  QQ )  /\  ( QQ  C.  RR  /\  RR  C.  CC ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 359    e. wcel 1725    e/ wnel 2599    C_ wss 3312    C. wpss 3313   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983   _ici 8984    / cdiv 9669   NNcn 9992   2c2 10041   ZZcz 10274   QQcq 10566   sqrcsqr 12030
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033
  Copyright terms: Public domain W3C validator