MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nthruz Unicode version

Theorem nthruz 12478
Description: The sequence  NN,  NN0, and  ZZ forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to 
NN0 but not  NN and minus one belongs to  ZZ but not  NN0. This theorem refines the chain of proper subsets nthruc 12477. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
nthruz  |-  ( NN 
C.  NN0  /\  NN0  C.  ZZ )

Proof of Theorem nthruz
StepHypRef Expression
1 nnssnn0 9921 . . 3  |-  NN  C_  NN0
2 0nn0 9933 . . . 4  |-  0  e.  NN0
3 0nnn 9731 . . . 4  |-  -.  0  e.  NN
42, 3pm3.2i 443 . . 3  |-  ( 0  e.  NN0  /\  -.  0  e.  NN )
5 ssnelpss 3478 . . 3  |-  ( NN  C_  NN0  ->  ( (
0  e.  NN0  /\  -.  0  e.  NN )  ->  NN  C.  NN0 ) )
61, 4, 5mp2 19 . 2  |-  NN  C.  NN0
7 nn0ssz 9997 . . 3  |-  NN0  C_  ZZ
8 1nn 9711 . . . . 5  |-  1  e.  NN
9 nnnegz 9980 . . . . 5  |-  ( 1  e.  NN  ->  -u 1  e.  ZZ )
108, 9ax-mp 10 . . . 4  |-  -u 1  e.  ZZ
11 neg0 9047 . . . . . . 7  |-  -u 0  =  0
12 0lt1 9250 . . . . . . 7  |-  0  <  1
1311, 12eqbrtri 4002 . . . . . 6  |-  -u 0  <  1
14 1re 8791 . . . . . . 7  |-  1  e.  RR
15 0re 8792 . . . . . . 7  |-  0  e.  RR
1614, 15ltnegcon1i 9278 . . . . . 6  |-  ( -u
1  <  0  <->  -u 0  <  1 )
1713, 16mpbir 202 . . . . 5  |-  -u 1  <  0
18 nn0nlt0 9945 . . . . 5  |-  ( -u
1  e.  NN0  ->  -.  -u 1  <  0
)
1917, 18mt2 172 . . . 4  |-  -.  -u 1  e.  NN0
2010, 19pm3.2i 443 . . 3  |-  ( -u
1  e.  ZZ  /\  -.  -u 1  e.  NN0 )
21 ssnelpss 3478 . . 3  |-  ( NN0  C_  ZZ  ->  ( ( -u 1  e.  ZZ  /\  -.  -u 1  e.  NN0 )  ->  NN0  C.  ZZ ) )
227, 20, 21mp2 19 . 2  |-  NN0  C.  ZZ
236, 22pm3.2i 443 1  |-  ( NN 
C.  NN0  /\  NN0  C.  ZZ )
Colors of variables: wff set class
Syntax hints:   -. wn 5    /\ wa 360    e. wcel 1621    C_ wss 3113    C. wpss 3114   class class class wbr 3983   0cc0 8691   1c1 8692    < clt 8821   -ucneg 8992   NNcn 9700   NN0cn0 9918   ZZcz 9977
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-er 6614  df-en 6818  df-dom 6819  df-sdom 6820  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-n 9701  df-n0 9919  df-z 9978
  Copyright terms: Public domain W3C validator