MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nthruz Unicode version

Theorem nthruz 12457
Description: The sequence  NN,  NN0, and  ZZ forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to 
NN0 but not  NN and minus one belongs to  ZZ but not  NN0. This theorem refines the chain of proper subsets nthruc 12456. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
nthruz  |-  ( NN 
C.  NN0  /\  NN0  C.  ZZ )

Proof of Theorem nthruz
StepHypRef Expression
1 nnssnn0 9900 . . 3  |-  NN  C_  NN0
2 0nn0 9912 . . . 4  |-  0  e.  NN0
3 0nnn 9710 . . . 4  |-  -.  0  e.  NN
42, 3pm3.2i 443 . . 3  |-  ( 0  e.  NN0  /\  -.  0  e.  NN )
5 ssnelpss 3459 . . 3  |-  ( NN  C_  NN0  ->  ( (
0  e.  NN0  /\  -.  0  e.  NN )  ->  NN  C.  NN0 ) )
61, 4, 5mp2 19 . 2  |-  NN  C.  NN0
7 nn0ssz 9976 . . 3  |-  NN0  C_  ZZ
8 1nn 9690 . . . . 5  |-  1  e.  NN
9 nnnegz 9959 . . . . 5  |-  ( 1  e.  NN  ->  -u 1  e.  ZZ )
108, 9ax-mp 10 . . . 4  |-  -u 1  e.  ZZ
11 neg0 9026 . . . . . . 7  |-  -u 0  =  0
12 0lt1 9229 . . . . . . 7  |-  0  <  1
1311, 12eqbrtri 3982 . . . . . 6  |-  -u 0  <  1
14 1re 8770 . . . . . . 7  |-  1  e.  RR
15 0re 8771 . . . . . . 7  |-  0  e.  RR
1614, 15ltnegcon1i 9257 . . . . . 6  |-  ( -u
1  <  0  <->  -u 0  <  1 )
1713, 16mpbir 202 . . . . 5  |-  -u 1  <  0
18 nn0nlt0 9924 . . . . 5  |-  ( -u
1  e.  NN0  ->  -.  -u 1  <  0
)
1917, 18mt2 172 . . . 4  |-  -.  -u 1  e.  NN0
2010, 19pm3.2i 443 . . 3  |-  ( -u
1  e.  ZZ  /\  -.  -u 1  e.  NN0 )
21 ssnelpss 3459 . . 3  |-  ( NN0  C_  ZZ  ->  ( ( -u 1  e.  ZZ  /\  -.  -u 1  e.  NN0 )  ->  NN0  C.  ZZ ) )
227, 20, 21mp2 19 . 2  |-  NN0  C.  ZZ
236, 22pm3.2i 443 1  |-  ( NN 
C.  NN0  /\  NN0  C.  ZZ )
Colors of variables: wff set class
Syntax hints:   -. wn 5    /\ wa 360    e. wcel 1621    C_ wss 3094    C. wpss 3095   class class class wbr 3963   0cc0 8670   1c1 8671    < clt 8800   -ucneg 8971   NNcn 9679   NN0cn0 9897   ZZcz 9956
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-n 9680  df-n0 9898  df-z 9957
  Copyright terms: Public domain W3C validator