MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrval Unicode version

Theorem ntrval 16769
Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ntrval  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )

Proof of Theorem ntrval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5  |-  X  = 
U. J
21ntrfval 16757 . . . 4  |-  ( J  e.  Top  ->  ( int `  J )  =  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) )
32fveq1d 5488 . . 3  |-  ( J  e.  Top  ->  (
( int `  J
) `  S )  =  ( ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) `  S ) )
43adantr 451 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  ( ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) `  S ) )
51topopn 16648 . . . . 5  |-  ( J  e.  Top  ->  X  e.  J )
6 elpw2g 4168 . . . . 5  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
75, 6syl 15 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
87biimpar 471 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  ~P X
)
9 inex1g 4158 . . . . 5  |-  ( J  e.  Top  ->  ( J  i^i  ~P S )  e.  _V )
109adantr 451 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( J  i^i  ~P S )  e.  _V )
11 uniexg 4516 . . . 4  |-  ( ( J  i^i  ~P S
)  e.  _V  ->  U. ( J  i^i  ~P S )  e.  _V )
1210, 11syl 15 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  U. ( J  i^i  ~P S )  e.  _V )
13 pweq 3629 . . . . . 6  |-  ( x  =  S  ->  ~P x  =  ~P S
)
1413ineq2d 3371 . . . . 5  |-  ( x  =  S  ->  ( J  i^i  ~P x )  =  ( J  i^i  ~P S ) )
1514unieqd 3839 . . . 4  |-  ( x  =  S  ->  U. ( J  i^i  ~P x )  =  U. ( J  i^i  ~P S ) )
16 eqid 2284 . . . 4  |-  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) )  =  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) )
1715, 16fvmptg 5562 . . 3  |-  ( ( S  e.  ~P X  /\  U. ( J  i^i  ~P S )  e.  _V )  ->  ( ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) `  S )  =  U. ( J  i^i  ~P S
) )
188, 12, 17syl2anc 642 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( x  e. 
~P X  |->  U. ( J  i^i  ~P x ) ) `  S )  =  U. ( J  i^i  ~P S ) )
194, 18eqtrd 2316 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1685   _Vcvv 2789    i^i cin 3152    C_ wss 3153   ~Pcpw 3626   U.cuni 3828    e. cmpt 4078   ` cfv 5221   Topctop 16627   intcnt 16750
This theorem is referenced by:  ntropn  16782  clsval2  16783  ntrss2  16790  ssntr  16791  isopn3  16799  ntreq0  16810
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-top 16632  df-ntr 16753
  Copyright terms: Public domain W3C validator