MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrval Unicode version

Theorem ntrval 16736
Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ntrval  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )

Proof of Theorem ntrval
StepHypRef Expression
1 iscld.1 . . . . 5  |-  X  = 
U. J
21ntrfval 16724 . . . 4  |-  ( J  e.  Top  ->  ( int `  J )  =  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) )
32fveq1d 5460 . . 3  |-  ( J  e.  Top  ->  (
( int `  J
) `  S )  =  ( ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) `  S ) )
43adantr 453 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  ( ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) `  S ) )
51topopn 16615 . . . . 5  |-  ( J  e.  Top  ->  X  e.  J )
6 elpw2g 4141 . . . . 5  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
75, 6syl 17 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
87biimpar 473 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  ~P X
)
9 inex1g 4131 . . . . 5  |-  ( J  e.  Top  ->  ( J  i^i  ~P S )  e.  _V )
109adantr 453 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( J  i^i  ~P S )  e.  _V )
11 uniexg 4489 . . . 4  |-  ( ( J  i^i  ~P S
)  e.  _V  ->  U. ( J  i^i  ~P S )  e.  _V )
1210, 11syl 17 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  U. ( J  i^i  ~P S )  e.  _V )
13 pweq 3602 . . . . . 6  |-  ( x  =  S  ->  ~P x  =  ~P S
)
1413ineq2d 3345 . . . . 5  |-  ( x  =  S  ->  ( J  i^i  ~P x )  =  ( J  i^i  ~P S ) )
1514unieqd 3812 . . . 4  |-  ( x  =  S  ->  U. ( J  i^i  ~P x )  =  U. ( J  i^i  ~P S ) )
16 eqid 2258 . . . 4  |-  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) )  =  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) )
1715, 16fvmptg 5534 . . 3  |-  ( ( S  e.  ~P X  /\  U. ( J  i^i  ~P S )  e.  _V )  ->  ( ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) `  S )  =  U. ( J  i^i  ~P S
) )
188, 12, 17syl2anc 645 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( x  e. 
~P X  |->  U. ( J  i^i  ~P x ) ) `  S )  =  U. ( J  i^i  ~P S ) )
194, 18eqtrd 2290 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   _Vcvv 2763    i^i cin 3126    C_ wss 3127   ~Pcpw 3599   U.cuni 3801    e. cmpt 4051   ` cfv 4673   Topctop 16594   intcnt 16717
This theorem is referenced by:  ntropn  16749  clsval2  16750  ntrss2  16757  ssntr  16758  isopn3  16766  ntreq0  16777
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-top 16599  df-ntr 16720
  Copyright terms: Public domain W3C validator