MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nulmbl2 Unicode version

Theorem nulmbl2 18842
Description: A set of outer measure zero is measurable. The term "outer measure zero" here is slightly different from "nullset/negligible set"; a nullset has  vol * ( A )  =  0 while "outer measure zero" means that for any  x there is a  y containing  A with volume less than  x. Assuming AC, these notions are equivalent (because the intersection of all such  y is a nullset) but in ZF this is a strictly weaker notion. Proposition 563Gb of [Fremlin5] p. 193. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
nulmbl2  |-  ( A. x  e.  RR+  E. y  e.  dom  vol ( A 
C_  y  /\  ( vol * `  y )  <_  x )  ->  A  e.  dom  vol )
Distinct variable group:    x, y, A

Proof of Theorem nulmbl2
StepHypRef Expression
1 1rp 10311 . . . . 5  |-  1  e.  RR+
2 ne0i 3422 . . . . 5  |-  ( 1  e.  RR+  ->  RR+  =/=  (/) )
31, 2ax-mp 10 . . . 4  |-  RR+  =/=  (/)
4 r19.2z 3504 . . . 4  |-  ( (
RR+  =/=  (/)  /\  A. x  e.  RR+  E. y  e.  dom  vol ( A 
C_  y  /\  ( vol * `  y )  <_  x ) )  ->  E. x  e.  RR+  E. y  e.  dom  vol ( A  C_  y  /\  ( vol * `  y
)  <_  x )
)
53, 4mpan 654 . . 3  |-  ( A. x  e.  RR+  E. y  e.  dom  vol ( A 
C_  y  /\  ( vol * `  y )  <_  x )  ->  E. x  e.  RR+  E. y  e.  dom  vol ( A 
C_  y  /\  ( vol * `  y )  <_  x ) )
6 simprl 735 . . . . . 6  |-  ( ( y  e.  dom  vol  /\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) )  ->  A  C_  y )
7 mblss 18838 . . . . . . 7  |-  ( y  e.  dom  vol  ->  y 
C_  RR )
87adantr 453 . . . . . 6  |-  ( ( y  e.  dom  vol  /\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) )  ->  y  C_  RR )
96, 8sstrd 3150 . . . . 5  |-  ( ( y  e.  dom  vol  /\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) )  ->  A  C_  RR )
109rexlimiva 2635 . . . 4  |-  ( E. y  e.  dom  vol ( A  C_  y  /\  ( vol * `  y
)  <_  x )  ->  A  C_  RR )
1110rexlimivw 2636 . . 3  |-  ( E. x  e.  RR+  E. y  e.  dom  vol ( A 
C_  y  /\  ( vol * `  y )  <_  x )  ->  A  C_  RR )
125, 11syl 17 . 2  |-  ( A. x  e.  RR+  E. y  e.  dom  vol ( A 
C_  y  /\  ( vol * `  y )  <_  x )  ->  A  C_  RR )
13 inss1 3350 . . . . . . . . . . . . . 14  |-  ( z  i^i  A )  C_  z
1413a1i 12 . . . . . . . . . . . . 13  |-  ( ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR )  ->  ( z  i^i 
A )  C_  z
)
15 elpwi 3593 . . . . . . . . . . . . . 14  |-  ( z  e.  ~P RR  ->  z 
C_  RR )
1615adantr 453 . . . . . . . . . . . . 13  |-  ( ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR )  ->  z  C_  RR )
17 simpr 449 . . . . . . . . . . . . 13  |-  ( ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR )  ->  ( vol * `  z )  e.  RR )
18 ovolsscl 18793 . . . . . . . . . . . . 13  |-  ( ( ( z  i^i  A
)  C_  z  /\  z  C_  RR  /\  ( vol * `  z )  e.  RR )  -> 
( vol * `  ( z  i^i  A
) )  e.  RR )
1914, 16, 17, 18syl3anc 1187 . . . . . . . . . . . 12  |-  ( ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR )  ->  ( vol * `  ( z  i^i  A
) )  e.  RR )
20 difss 3264 . . . . . . . . . . . . . 14  |-  ( z 
\  A )  C_  z
2120a1i 12 . . . . . . . . . . . . 13  |-  ( ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR )  ->  ( z  \  A )  C_  z
)
22 ovolsscl 18793 . . . . . . . . . . . . 13  |-  ( ( ( z  \  A
)  C_  z  /\  z  C_  RR  /\  ( vol * `  z )  e.  RR )  -> 
( vol * `  ( z  \  A
) )  e.  RR )
2321, 16, 17, 22syl3anc 1187 . . . . . . . . . . . 12  |-  ( ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR )  ->  ( vol * `  ( z  \  A
) )  e.  RR )
2419, 23readdcld 8816 . . . . . . . . . . 11  |-  ( ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR )  ->  ( ( vol
* `  ( z  i^i  A ) )  +  ( vol * `  ( z  \  A
) ) )  e.  RR )
2524ad2antrr 709 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( ( vol * `  ( z  i^i  A
) )  +  ( vol * `  (
z  \  A )
) )  e.  RR )
2617ad2antrr 709 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( vol * `  z )  e.  RR )
27 difss 3264 . . . . . . . . . . . . 13  |-  ( y 
\  A )  C_  y
2827a1i 12 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( y  \  A
)  C_  y )
298adantl 454 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
y  C_  RR )
30 rpre 10313 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  x  e.  RR )
3130ad2antlr 710 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  ->  x  e.  RR )
32 simprrr 744 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( vol * `  y )  <_  x
)
33 ovollecl 18790 . . . . . . . . . . . . 13  |-  ( ( y  C_  RR  /\  x  e.  RR  /\  ( vol
* `  y )  <_  x )  ->  ( vol * `  y )  e.  RR )
3429, 31, 32, 33syl3anc 1187 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( vol * `  y )  e.  RR )
35 ovolsscl 18793 . . . . . . . . . . . 12  |-  ( ( ( y  \  A
)  C_  y  /\  y  C_  RR  /\  ( vol * `  y )  e.  RR )  -> 
( vol * `  ( y  \  A
) )  e.  RR )
3628, 29, 34, 35syl3anc 1187 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( vol * `  ( y  \  A
) )  e.  RR )
3726, 36readdcld 8816 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( ( vol * `  z )  +  ( vol * `  (
y  \  A )
) )  e.  RR )
3826, 31readdcld 8816 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( ( vol * `  z )  +  x
)  e.  RR )
3919ad2antrr 709 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( vol * `  ( z  i^i  A
) )  e.  RR )
4023ad2antrr 709 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( vol * `  ( z  \  A
) )  e.  RR )
41 inss1 3350 . . . . . . . . . . . . . 14  |-  ( z  i^i  y )  C_  z
4241a1i 12 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( z  i^i  y
)  C_  z )
4316ad2antrr 709 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
z  C_  RR )
44 ovolsscl 18793 . . . . . . . . . . . . 13  |-  ( ( ( z  i^i  y
)  C_  z  /\  z  C_  RR  /\  ( vol * `  z )  e.  RR )  -> 
( vol * `  ( z  i^i  y
) )  e.  RR )
4542, 43, 26, 44syl3anc 1187 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( vol * `  ( z  i^i  y
) )  e.  RR )
46 difss 3264 . . . . . . . . . . . . . . 15  |-  ( z 
\  y )  C_  z
4746a1i 12 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( z  \  y
)  C_  z )
48 ovolsscl 18793 . . . . . . . . . . . . . 14  |-  ( ( ( z  \  y
)  C_  z  /\  z  C_  RR  /\  ( vol * `  z )  e.  RR )  -> 
( vol * `  ( z  \  y
) )  e.  RR )
4947, 43, 26, 48syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( vol * `  ( z  \  y
) )  e.  RR )
5049, 36readdcld 8816 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( ( vol * `  ( z  \  y
) )  +  ( vol * `  (
y  \  A )
) )  e.  RR )
51 simprrl 743 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  ->  A  C_  y )
52 sslin 3356 . . . . . . . . . . . . . 14  |-  ( A 
C_  y  ->  (
z  i^i  A )  C_  ( z  i^i  y
) )
5351, 52syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( z  i^i  A
)  C_  ( z  i^i  y ) )
5441, 43syl5ss 3151 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( z  i^i  y
)  C_  RR )
55 ovolss 18792 . . . . . . . . . . . . 13  |-  ( ( ( z  i^i  A
)  C_  ( z  i^i  y )  /\  (
z  i^i  y )  C_  RR )  ->  ( vol * `  ( z  i^i  A ) )  <_  ( vol * `  ( z  i^i  y
) ) )
5653, 54, 55syl2anc 645 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( vol * `  ( z  i^i  A
) )  <_  ( vol * `  ( z  i^i  y ) ) )
5746, 43syl5ss 3151 . . . . . . . . . . . . . . 15  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( z  \  y
)  C_  RR )
5827, 29syl5ss 3151 . . . . . . . . . . . . . . 15  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( y  \  A
)  C_  RR )
5957, 58unssd 3312 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( ( z  \ 
y )  u.  (
y  \  A )
)  C_  RR )
60 ovolun 18806 . . . . . . . . . . . . . . 15  |-  ( ( ( ( z  \ 
y )  C_  RR  /\  ( vol * `  ( z  \  y
) )  e.  RR )  /\  ( ( y 
\  A )  C_  RR  /\  ( vol * `  ( y  \  A
) )  e.  RR ) )  ->  ( vol * `  ( ( z  \  y )  u.  ( y  \  A ) ) )  <_  ( ( vol
* `  ( z  \  y ) )  +  ( vol * `  ( y  \  A
) ) ) )
6157, 49, 58, 36, 60syl22anc 1188 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( vol * `  ( ( z  \ 
y )  u.  (
y  \  A )
) )  <_  (
( vol * `  ( z  \  y
) )  +  ( vol * `  (
y  \  A )
) ) )
62 ovollecl 18790 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  \ 
y )  u.  (
y  \  A )
)  C_  RR  /\  (
( vol * `  ( z  \  y
) )  +  ( vol * `  (
y  \  A )
) )  e.  RR  /\  ( vol * `  ( ( z  \ 
y )  u.  (
y  \  A )
) )  <_  (
( vol * `  ( z  \  y
) )  +  ( vol * `  (
y  \  A )
) ) )  -> 
( vol * `  ( ( z  \ 
y )  u.  (
y  \  A )
) )  e.  RR )
6359, 50, 61, 62syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( vol * `  ( ( z  \ 
y )  u.  (
y  \  A )
) )  e.  RR )
64 ssun1 3299 . . . . . . . . . . . . . . . . . 18  |-  z  C_  ( z  u.  y
)
65 undif1 3490 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  \  y )  u.  y )  =  ( z  u.  y
)
6664, 65sseqtr4i 3172 . . . . . . . . . . . . . . . . 17  |-  z  C_  ( ( z  \ 
y )  u.  y
)
67 ssdif 3272 . . . . . . . . . . . . . . . . 17  |-  ( z 
C_  ( ( z 
\  y )  u.  y )  ->  (
z  \  A )  C_  ( ( ( z 
\  y )  u.  y )  \  A
) )
6866, 67ax-mp 10 . . . . . . . . . . . . . . . 16  |-  ( z 
\  A )  C_  ( ( ( z 
\  y )  u.  y )  \  A
)
69 difundir 3383 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  \  y
)  u.  y ) 
\  A )  =  ( ( ( z 
\  y )  \  A )  u.  (
y  \  A )
)
7068, 69sseqtri 3171 . . . . . . . . . . . . . . 15  |-  ( z 
\  A )  C_  ( ( ( z 
\  y )  \  A )  u.  (
y  \  A )
)
71 difun1 3389 . . . . . . . . . . . . . . . . 17  |-  ( z 
\  ( y  u.  A ) )  =  ( ( z  \ 
y )  \  A
)
72 ssequn2 3309 . . . . . . . . . . . . . . . . . . 19  |-  ( A 
C_  y  <->  ( y  u.  A )  =  y )
7351, 72sylib 190 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( y  u.  A
)  =  y )
7473difeq2d 3255 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( z  \  (
y  u.  A ) )  =  ( z 
\  y ) )
7571, 74syl5eqr 2302 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( ( z  \ 
y )  \  A
)  =  ( z 
\  y ) )
7675uneq1d 3289 . . . . . . . . . . . . . . 15  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( ( ( z 
\  y )  \  A )  u.  (
y  \  A )
)  =  ( ( z  \  y )  u.  ( y  \  A ) ) )
7770, 76syl5sseq 3187 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( z  \  A
)  C_  ( (
z  \  y )  u.  ( y  \  A
) ) )
78 ovolss 18792 . . . . . . . . . . . . . 14  |-  ( ( ( z  \  A
)  C_  ( (
z  \  y )  u.  ( y  \  A
) )  /\  (
( z  \  y
)  u.  ( y 
\  A ) ) 
C_  RR )  -> 
( vol * `  ( z  \  A
) )  <_  ( vol * `  ( ( z  \  y )  u.  ( y  \  A ) ) ) )
7977, 59, 78syl2anc 645 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( vol * `  ( z  \  A
) )  <_  ( vol * `  ( ( z  \  y )  u.  ( y  \  A ) ) ) )
8040, 63, 50, 79, 61letrd 8927 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( vol * `  ( z  \  A
) )  <_  (
( vol * `  ( z  \  y
) )  +  ( vol * `  (
y  \  A )
) ) )
8139, 40, 45, 50, 56, 80le2addd 9344 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( ( vol * `  ( z  i^i  A
) )  +  ( vol * `  (
z  \  A )
) )  <_  (
( vol * `  ( z  i^i  y
) )  +  ( ( vol * `  ( z  \  y
) )  +  ( vol * `  (
y  \  A )
) ) ) )
82 simprl 735 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
y  e.  dom  vol )
83 mblsplit 18839 . . . . . . . . . . . . . 14  |-  ( ( y  e.  dom  vol  /\  z  C_  RR  /\  ( vol * `  z )  e.  RR )  -> 
( vol * `  z )  =  ( ( vol * `  ( z  i^i  y
) )  +  ( vol * `  (
z  \  y )
) ) )
8482, 43, 26, 83syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( vol * `  z )  =  ( ( vol * `  ( z  i^i  y
) )  +  ( vol * `  (
z  \  y )
) ) )
8584oveq1d 5793 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( ( vol * `  z )  +  ( vol * `  (
y  \  A )
) )  =  ( ( ( vol * `  ( z  i^i  y
) )  +  ( vol * `  (
z  \  y )
) )  +  ( vol * `  (
y  \  A )
) ) )
8645recnd 8815 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( vol * `  ( z  i^i  y
) )  e.  CC )
8749recnd 8815 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( vol * `  ( z  \  y
) )  e.  CC )
8836recnd 8815 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( vol * `  ( y  \  A
) )  e.  CC )
8986, 87, 88addassd 8811 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( ( ( vol
* `  ( z  i^i  y ) )  +  ( vol * `  ( z  \  y
) ) )  +  ( vol * `  ( y  \  A
) ) )  =  ( ( vol * `  ( z  i^i  y
) )  +  ( ( vol * `  ( z  \  y
) )  +  ( vol * `  (
y  \  A )
) ) ) )
9085, 89eqtrd 2288 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( ( vol * `  z )  +  ( vol * `  (
y  \  A )
) )  =  ( ( vol * `  ( z  i^i  y
) )  +  ( ( vol * `  ( z  \  y
) )  +  ( vol * `  (
y  \  A )
) ) ) )
9181, 90breqtrrd 4009 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( ( vol * `  ( z  i^i  A
) )  +  ( vol * `  (
z  \  A )
) )  <_  (
( vol * `  z )  +  ( vol * `  (
y  \  A )
) ) )
92 ovolss 18792 . . . . . . . . . . . . 13  |-  ( ( ( y  \  A
)  C_  y  /\  y  C_  RR )  -> 
( vol * `  ( y  \  A
) )  <_  ( vol * `  y ) )
9327, 29, 92sylancr 647 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( vol * `  ( y  \  A
) )  <_  ( vol * `  y ) )
9436, 34, 31, 93, 32letrd 8927 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( vol * `  ( y  \  A
) )  <_  x
)
9536, 31, 26, 94leadd2dd 9341 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( ( vol * `  z )  +  ( vol * `  (
y  \  A )
) )  <_  (
( vol * `  z )  +  x
) )
9625, 37, 38, 91, 95letrd 8927 . . . . . . . . 9  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol * `  y )  <_  x
) ) )  -> 
( ( vol * `  ( z  i^i  A
) )  +  ( vol * `  (
z  \  A )
) )  <_  (
( vol * `  z )  +  x
) )
9796expr 601 . . . . . . . 8  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  /\  y  e.  dom  vol )  ->  ( ( A  C_  y  /\  ( vol * `  y )  <_  x
)  ->  ( ( vol * `  ( z  i^i  A ) )  +  ( vol * `  ( z  \  A
) ) )  <_ 
( ( vol * `  z )  +  x
) ) )
9897rexlimdva 2640 . . . . . . 7  |-  ( ( ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR )  /\  x  e.  RR+ )  ->  ( E. y  e.  dom  vol ( A 
C_  y  /\  ( vol * `  y )  <_  x )  -> 
( ( vol * `  ( z  i^i  A
) )  +  ( vol * `  (
z  \  A )
) )  <_  (
( vol * `  z )  +  x
) ) )
9998ralimdva 2594 . . . . . 6  |-  ( ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR )  ->  ( A. x  e.  RR+  E. y  e. 
dom  vol ( A  C_  y  /\  ( vol * `  y )  <_  x
)  ->  A. x  e.  RR+  ( ( vol
* `  ( z  i^i  A ) )  +  ( vol * `  ( z  \  A
) ) )  <_ 
( ( vol * `  z )  +  x
) ) )
10099impcom 421 . . . . 5  |-  ( ( A. x  e.  RR+  E. y  e.  dom  vol ( A  C_  y  /\  ( vol * `  y
)  <_  x )  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  ->  A. x  e.  RR+  ( ( vol
* `  ( z  i^i  A ) )  +  ( vol * `  ( z  \  A
) ) )  <_ 
( ( vol * `  z )  +  x
) )
10124adantl 454 . . . . . . 7  |-  ( ( A. x  e.  RR+  E. y  e.  dom  vol ( A  C_  y  /\  ( vol * `  y
)  <_  x )  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  ->  (
( vol * `  ( z  i^i  A
) )  +  ( vol * `  (
z  \  A )
) )  e.  RR )
102101rexrd 8835 . . . . . 6  |-  ( ( A. x  e.  RR+  E. y  e.  dom  vol ( A  C_  y  /\  ( vol * `  y
)  <_  x )  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  ->  (
( vol * `  ( z  i^i  A
) )  +  ( vol * `  (
z  \  A )
) )  e.  RR* )
103 simprr 736 . . . . . 6  |-  ( ( A. x  e.  RR+  E. y  e.  dom  vol ( A  C_  y  /\  ( vol * `  y
)  <_  x )  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  ->  ( vol * `  z )  e.  RR )
104 xralrple 10484 . . . . . 6  |-  ( ( ( ( vol * `  ( z  i^i  A
) )  +  ( vol * `  (
z  \  A )
) )  e.  RR*  /\  ( vol * `  z )  e.  RR )  ->  ( ( ( vol * `  (
z  i^i  A )
)  +  ( vol
* `  ( z  \  A ) ) )  <_  ( vol * `  z )  <->  A. x  e.  RR+  ( ( vol
* `  ( z  i^i  A ) )  +  ( vol * `  ( z  \  A
) ) )  <_ 
( ( vol * `  z )  +  x
) ) )
105102, 103, 104syl2anc 645 . . . . 5  |-  ( ( A. x  e.  RR+  E. y  e.  dom  vol ( A  C_  y  /\  ( vol * `  y
)  <_  x )  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  ->  (
( ( vol * `  ( z  i^i  A
) )  +  ( vol * `  (
z  \  A )
) )  <_  ( vol * `  z )  <->  A. x  e.  RR+  (
( vol * `  ( z  i^i  A
) )  +  ( vol * `  (
z  \  A )
) )  <_  (
( vol * `  z )  +  x
) ) )
106100, 105mpbird 225 . . . 4  |-  ( ( A. x  e.  RR+  E. y  e.  dom  vol ( A  C_  y  /\  ( vol * `  y
)  <_  x )  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  ->  (
( vol * `  ( z  i^i  A
) )  +  ( vol * `  (
z  \  A )
) )  <_  ( vol * `  z ) )
107106expr 601 . . 3  |-  ( ( A. x  e.  RR+  E. y  e.  dom  vol ( A  C_  y  /\  ( vol * `  y
)  <_  x )  /\  z  e.  ~P RR )  ->  ( ( vol * `  z
)  e.  RR  ->  ( ( vol * `  ( z  i^i  A
) )  +  ( vol * `  (
z  \  A )
) )  <_  ( vol * `  z ) ) )
108107ralrimiva 2599 . 2  |-  ( A. x  e.  RR+  E. y  e.  dom  vol ( A 
C_  y  /\  ( vol * `  y )  <_  x )  ->  A. z  e.  ~P  RR ( ( vol * `  z )  e.  RR  ->  ( ( vol * `  ( z  i^i  A
) )  +  ( vol * `  (
z  \  A )
) )  <_  ( vol * `  z ) ) )
109 ismbl2 18834 . 2  |-  ( A  e.  dom  vol  <->  ( A  C_  RR  /\  A. z  e.  ~P  RR ( ( vol * `  z
)  e.  RR  ->  ( ( vol * `  ( z  i^i  A
) )  +  ( vol * `  (
z  \  A )
) )  <_  ( vol * `  z ) ) ) )
11012, 108, 109sylanbrc 648 1  |-  ( A. x  e.  RR+  E. y  e.  dom  vol ( A 
C_  y  /\  ( vol * `  y )  <_  x )  ->  A  e.  dom  vol )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   E.wrex 2517    \ cdif 3110    u. cun 3111    i^i cin 3112    C_ wss 3113   (/)c0 3416   ~Pcpw 3585   class class class wbr 3983   dom cdm 4647   ` cfv 4659  (class class class)co 5778   RRcr 8690   1c1 8692    + caddc 8694   RR*cxr 8820    <_ cle 8822   RR+crp 10307   vol *covol 18770   volcvol 18771
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768  ax-pre-sup 8769
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-er 6614  df-map 6728  df-en 6818  df-dom 6819  df-sdom 6820  df-sup 7148  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-div 9378  df-n 9701  df-2 9758  df-3 9759  df-n0 9919  df-z 9978  df-uz 10184  df-q 10270  df-rp 10308  df-ioo 10612  df-ico 10614  df-icc 10615  df-fz 10735  df-fl 10877  df-seq 10999  df-exp 11057  df-cj 11535  df-re 11536  df-im 11537  df-sqr 11671  df-abs 11672  df-ovol 18772  df-vol 18773
  Copyright terms: Public domain W3C validator