MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numth Unicode version

Theorem numth 8032
Description: Numeration theorem: every set can be put into one-to-one correspondence with some ordinal (using AC). Theorem 10.3 of [TakeutiZaring] p. 84. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Mario Carneiro, 8-Jan-2015.)
Hypothesis
Ref Expression
numth.1  |-  A  e. 
_V
Assertion
Ref Expression
numth  |-  E. x  e.  On  E. f  f : x -1-1-onto-> A
Distinct variable group:    x, f, A

Proof of Theorem numth
StepHypRef Expression
1 numth.1 . . 3  |-  A  e. 
_V
21numth2 8031 . 2  |-  E. x  e.  On  x  ~~  A
3 bren 6804 . . 3  |-  ( x 
~~  A  <->  E. f 
f : x -1-1-onto-> A )
43rexbii 2539 . 2  |-  ( E. x  e.  On  x  ~~  A  <->  E. x  e.  On  E. f  f : x -1-1-onto-> A )
52, 4mpbi 201 1  |-  E. x  e.  On  E. f  f : x -1-1-onto-> A
Colors of variables: wff set class
Syntax hints:   E.wex 1537    e. wcel 1621   E.wrex 2517   _Vcvv 2740   class class class wbr 3963   Oncon0 4329   -1-1-onto->wf1o 4637    ~~ cen 6793
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-ac2 8022
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-suc 4335  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-iota 6190  df-riota 6237  df-recs 6321  df-en 6797  df-card 7505  df-ac 7676
  Copyright terms: Public domain W3C validator