MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numthcor Unicode version

Theorem numthcor 8363
Description: Any set is strictly dominated by some ordinal. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
numthcor  |-  ( A  e.  V  ->  E. x  e.  On  A  ~<  x
)
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem numthcor
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq1 4207 . . 3  |-  ( y  =  A  ->  (
y  ~<  x  <->  A  ~<  x ) )
21rexbidv 2718 . 2  |-  ( y  =  A  ->  ( E. x  e.  On  y  ~<  x  <->  E. x  e.  On  A  ~<  x
) )
3 vex 2951 . . . . 5  |-  y  e. 
_V
43pwex 4374 . . . 4  |-  ~P y  e.  _V
54numth2 8340 . . 3  |-  E. x  e.  On  x  ~~  ~P y
63canth2 7251 . . . . 5  |-  y  ~<  ~P y
7 ensym 7147 . . . . 5  |-  ( x 
~~  ~P y  ->  ~P y  ~~  x )
8 sdomentr 7232 . . . . 5  |-  ( ( y  ~<  ~P y  /\  ~P y  ~~  x
)  ->  y  ~<  x )
96, 7, 8sylancr 645 . . . 4  |-  ( x 
~~  ~P y  ->  y  ~<  x )
109reximi 2805 . . 3  |-  ( E. x  e.  On  x  ~~  ~P y  ->  E. x  e.  On  y  ~<  x
)
115, 10ax-mp 8 . 2  |-  E. x  e.  On  y  ~<  x
122, 11vtoclg 3003 1  |-  ( A  e.  V  ->  E. x  e.  On  A  ~<  x
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   E.wrex 2698   ~Pcpw 3791   class class class wbr 4204   Oncon0 4573    ~~ cen 7097    ~< csdm 7099
This theorem is referenced by:  cardmin  8428
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-ac2 8332
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-suc 4579  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-riota 6540  df-recs 6624  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-card 7815  df-ac 7986
  Copyright terms: Public domain W3C validator