MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvge0 Unicode version

Theorem nvge0 21256
Description: The norm of a normed complex vector space is nonnegative. Second part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvge0.1  |-  X  =  ( BaseSet `  U )
nvge0.6  |-  N  =  ( normCV `  U )
Assertion
Ref Expression
nvge0  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  0  <_  ( N `  A
) )

Proof of Theorem nvge0
StepHypRef Expression
1 nvge0.1 . . . 4  |-  X  =  ( BaseSet `  U )
2 nvge0.6 . . . 4  |-  N  =  ( normCV `  U )
31, 2nvcl 21241 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  A )  e.  RR )
4 2re 9831 . . 3  |-  2  e.  RR
53, 4jctil 523 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
2  e.  RR  /\  ( N `  A )  e.  RR ) )
6 eqid 2296 . . . . . . . 8  |-  ( 0vec `  U )  =  (
0vec `  U )
76, 2nvz0 21250 . . . . . . 7  |-  ( U  e.  NrmCVec  ->  ( N `  ( 0vec `  U )
)  =  0 )
87adantr 451 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  ( 0vec `  U ) )  =  0 )
9 ax-1cn 8811 . . . . . . . . . . 11  |-  1  e.  CC
109negidi 9131 . . . . . . . . . 10  |-  ( 1  +  -u 1 )  =  0
1110oveq1i 5884 . . . . . . . . 9  |-  ( ( 1  +  -u 1
) ( .s OLD `  U ) A )  =  ( 0 ( .s OLD `  U
) A )
12 eqid 2296 . . . . . . . . . 10  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
131, 12, 6nv0 21211 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
0 ( .s OLD `  U ) A )  =  ( 0vec `  U
) )
1411, 13syl5req 2341 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( 0vec `  U )  =  ( ( 1  + 
-u 1 ) ( .s OLD `  U
) A ) )
15 neg1cn 9829 . . . . . . . . 9  |-  -u 1  e.  CC
16 eqid 2296 . . . . . . . . . . 11  |-  ( +v
`  U )  =  ( +v `  U
)
171, 16, 12nvdir 21205 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  (
1  e.  CC  /\  -u 1  e.  CC  /\  A  e.  X )
)  ->  ( (
1  +  -u 1
) ( .s OLD `  U ) A )  =  ( ( 1 ( .s OLD `  U
) A ) ( +v `  U ) ( -u 1 ( .s OLD `  U
) A ) ) )
189, 17mp3anr1 1274 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  ( -u 1  e.  CC  /\  A  e.  X )
)  ->  ( (
1  +  -u 1
) ( .s OLD `  U ) A )  =  ( ( 1 ( .s OLD `  U
) A ) ( +v `  U ) ( -u 1 ( .s OLD `  U
) A ) ) )
1915, 18mpanr1 664 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( 1  +  -u
1 ) ( .s
OLD `  U ) A )  =  ( ( 1 ( .s
OLD `  U ) A ) ( +v
`  U ) (
-u 1 ( .s
OLD `  U ) A ) ) )
201, 12nvsid 21201 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
1 ( .s OLD `  U ) A )  =  A )
2120oveq1d 5889 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( 1 ( .s
OLD `  U ) A ) ( +v
`  U ) (
-u 1 ( .s
OLD `  U ) A ) )  =  ( A ( +v
`  U ) (
-u 1 ( .s
OLD `  U ) A ) ) )
2214, 19, 213eqtrd 2332 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( 0vec `  U )  =  ( A ( +v
`  U ) (
-u 1 ( .s
OLD `  U ) A ) ) )
2322fveq2d 5545 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  ( 0vec `  U ) )  =  ( N `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) )
248, 23eqtr3d 2330 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  0  =  ( N `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) )
251, 12nvscl 21200 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  A  e.  X )  ->  ( -u 1 ( .s OLD `  U ) A )  e.  X )
2615, 25mp3an2 1265 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( -u 1 ( .s OLD `  U ) A )  e.  X )
271, 16, 2nvtri 21252 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( -u 1 ( .s OLD `  U ) A )  e.  X )  -> 
( N `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) )  <_  (
( N `  A
)  +  ( N `
 ( -u 1
( .s OLD `  U
) A ) ) ) )
2826, 27mpd3an3 1278 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  ( A
( +v `  U
) ( -u 1
( .s OLD `  U
) A ) ) )  <_  ( ( N `  A )  +  ( N `  ( -u 1 ( .s
OLD `  U ) A ) ) ) )
2924, 28eqbrtrd 4059 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  0  <_  ( ( N `  A )  +  ( N `  ( -u
1 ( .s OLD `  U ) A ) ) ) )
301, 12, 2nvm1 21246 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  ( -u 1
( .s OLD `  U
) A ) )  =  ( N `  A ) )
3130oveq2d 5890 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( N `  A
)  +  ( N `
 ( -u 1
( .s OLD `  U
) A ) ) )  =  ( ( N `  A )  +  ( N `  A ) ) )
323recnd 8877 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  A )  e.  CC )
33322timesd 9970 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
2  x.  ( N `
 A ) )  =  ( ( N `
 A )  +  ( N `  A
) ) )
3431, 33eqtr4d 2331 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( N `  A
)  +  ( N `
 ( -u 1
( .s OLD `  U
) A ) ) )  =  ( 2  x.  ( N `  A ) ) )
3529, 34breqtrd 4063 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  0  <_  ( 2  x.  ( N `  A )
) )
36 2pos 9844 . . 3  |-  0  <  2
3735, 36jctil 523 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
0  <  2  /\  0  <_  ( 2  x.  ( N `  A
) ) ) )
38 prodge0 9619 . 2  |-  ( ( ( 2  e.  RR  /\  ( N `  A
)  e.  RR )  /\  ( 0  <  2  /\  0  <_ 
( 2  x.  ( N `  A )
) ) )  -> 
0  <_  ( N `  A ) )
395, 37, 38syl2anc 642 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  0  <_  ( N `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884   -ucneg 9054   2c2 9811   NrmCVeccnv 21156   +vcpv 21157   BaseSetcba 21158   .s
OLDcns 21159   0veccn0v 21160   normCVcnmcv 21162
This theorem is referenced by:  nvgt0  21257  smcnlem  21286  ipnm  21303  nmooge0  21361  nmoub3i  21367  siilem1  21445  siii  21447  ubthlem3  21467  minvecolem1  21469  minvecolem5  21476  minvecolem6  21477  htthlem  21513
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-grpo 20874  df-gid 20875  df-ginv 20876  df-ablo 20965  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-nmcv 21172
  Copyright terms: Public domain W3C validator