MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvinv Unicode version

Theorem nvinv 21961
Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvinv.1  |-  X  =  ( BaseSet `  U )
nvinv.2  |-  G  =  ( +v `  U
)
nvinv.4  |-  S  =  ( .s OLD `  U
)
nvinv.5  |-  M  =  ( inv `  G
)
Assertion
Ref Expression
nvinv  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( -u 1 S A )  =  ( M `  A ) )

Proof of Theorem nvinv
StepHypRef Expression
1 eqid 2380 . . 3  |-  ( 1st `  U )  =  ( 1st `  U )
21nvvc 21935 . 2  |-  ( U  e.  NrmCVec  ->  ( 1st `  U
)  e.  CVec OLD )
3 nvinv.2 . . . 4  |-  G  =  ( +v `  U
)
43vafval 21923 . . 3  |-  G  =  ( 1st `  ( 1st `  U ) )
5 nvinv.4 . . . 4  |-  S  =  ( .s OLD `  U
)
65smfval 21925 . . 3  |-  S  =  ( 2nd `  ( 1st `  U ) )
7 nvinv.1 . . . 4  |-  X  =  ( BaseSet `  U )
87, 3bafval 21924 . . 3  |-  X  =  ran  G
9 nvinv.5 . . 3  |-  M  =  ( inv `  G
)
104, 6, 8, 9vcm 21891 . 2  |-  ( ( ( 1st `  U
)  e.  CVec OLD  /\  A  e.  X )  ->  ( -u 1 S A )  =  ( M `  A ) )
112, 10sylan 458 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( -u 1 S A )  =  ( M `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   ` cfv 5387  (class class class)co 6013   1stc1st 6279   1c1 8917   -ucneg 9217   invcgn 21617   CVec
OLDcvc 21865   NrmCVeccnv 21904   +vcpv 21905   BaseSetcba 21906   .s
OLDcns 21907
This theorem is referenced by:  nvinvfval  21962  nvmval  21964  nvmfval  21966  nvnegneg  21973  nvrinv  21975  nvlinv  21976
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-po 4437  df-so 4438  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-pnf 9048  df-mnf 9049  df-ltxr 9051  df-sub 9218  df-neg 9219  df-grpo 21620  df-gid 21621  df-ginv 21622  df-ablo 21711  df-vc 21866  df-nv 21912  df-va 21915  df-ba 21916  df-sm 21917  df-0v 21918  df-nmcv 21920
  Copyright terms: Public domain W3C validator