MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvnd Unicode version

Theorem nvnd 22137
Description: The norm of a normed complex vector space expressed in terms of the distance function of its induced metric. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvnd.1  |-  X  =  ( BaseSet `  U )
nvnd.5  |-  Z  =  ( 0vec `  U
)
nvnd.6  |-  N  =  ( normCV `  U )
nvnd.8  |-  D  =  ( IndMet `  U )
Assertion
Ref Expression
nvnd  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  A )  =  ( A D Z ) )

Proof of Theorem nvnd
StepHypRef Expression
1 nvnd.1 . . . . 5  |-  X  =  ( BaseSet `  U )
2 nvnd.5 . . . . 5  |-  Z  =  ( 0vec `  U
)
31, 2nvzcl 22072 . . . 4  |-  ( U  e.  NrmCVec  ->  Z  e.  X
)
43adantr 452 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  Z  e.  X )
5 eqid 2408 . . . 4  |-  ( -v
`  U )  =  ( -v `  U
)
6 nvnd.6 . . . 4  |-  N  =  ( normCV `  U )
7 nvnd.8 . . . 4  |-  D  =  ( IndMet `  U )
81, 5, 6, 7imsdval 22135 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  Z  e.  X )  ->  ( A D Z )  =  ( N `  ( A ( -v `  U ) Z ) ) )
94, 8mpd3an3 1280 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A D Z )  =  ( N `  ( A ( -v `  U ) Z ) ) )
10 eqid 2408 . . . . . 6  |-  ( +v
`  U )  =  ( +v `  U
)
11 eqid 2408 . . . . . 6  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
121, 10, 11, 5nvmval 22080 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  Z  e.  X )  ->  ( A ( -v `  U ) Z )  =  ( A ( +v `  U ) ( -u 1 ( .s OLD `  U
) Z ) ) )
134, 12mpd3an3 1280 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A ( -v `  U ) Z )  =  ( A ( +v `  U ) ( -u 1 ( .s OLD `  U
) Z ) ) )
14 neg1cn 10027 . . . . . . 7  |-  -u 1  e.  CC
1511, 2nvsz 22076 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC )  ->  ( -u 1 ( .s OLD `  U ) Z )  =  Z )
1614, 15mpan2 653 . . . . . 6  |-  ( U  e.  NrmCVec  ->  ( -u 1
( .s OLD `  U
) Z )  =  Z )
1716oveq2d 6060 . . . . 5  |-  ( U  e.  NrmCVec  ->  ( A ( +v `  U ) ( -u 1 ( .s OLD `  U
) Z ) )  =  ( A ( +v `  U ) Z ) )
1817adantr 452 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) Z ) )  =  ( A ( +v `  U
) Z ) )
191, 10, 2nv0rid 22073 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A ( +v `  U ) Z )  =  A )
2013, 18, 193eqtrd 2444 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A ( -v `  U ) Z )  =  A )
2120fveq2d 5695 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  ( A
( -v `  U
) Z ) )  =  ( N `  A ) )
229, 21eqtr2d 2441 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  A )  =  ( A D Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   ` cfv 5417  (class class class)co 6044   CCcc 8948   1c1 8951   -ucneg 9252   NrmCVeccnv 22020   +vcpv 22021   BaseSetcba 22022   .s
OLDcns 22023   0veccn0v 22024   -vcnsb 22025   normCVcnmcv 22026   IndMetcims 22027
This theorem is referenced by:  nvlmle  22145  ubthlem1  22329
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-po 4467  df-so 4468  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-riota 6512  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075  df-pnf 9082  df-mnf 9083  df-ltxr 9085  df-sub 9253  df-neg 9254  df-grpo 21736  df-gid 21737  df-ginv 21738  df-gdiv 21739  df-ablo 21827  df-vc 21982  df-nv 22028  df-va 22031  df-ba 22032  df-sm 22033  df-0v 22034  df-vs 22035  df-nmcv 22036  df-ims 22037
  Copyright terms: Public domain W3C validator