MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvnd Unicode version

Theorem nvnd 21259
Description: The norm of a normed complex vector space expressed in terms of the distance function of its induced metric. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvnd.1  |-  X  =  ( BaseSet `  U )
nvnd.5  |-  Z  =  ( 0vec `  U
)
nvnd.6  |-  N  =  ( normCV `  U )
nvnd.8  |-  D  =  ( IndMet `  U )
Assertion
Ref Expression
nvnd  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  A )  =  ( A D Z ) )

Proof of Theorem nvnd
StepHypRef Expression
1 nvnd.1 . . . . 5  |-  X  =  ( BaseSet `  U )
2 nvnd.5 . . . . 5  |-  Z  =  ( 0vec `  U
)
31, 2nvzcl 21194 . . . 4  |-  ( U  e.  NrmCVec  ->  Z  e.  X
)
43adantr 451 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  Z  e.  X )
5 eqid 2285 . . . 4  |-  ( -v
`  U )  =  ( -v `  U
)
6 nvnd.6 . . . 4  |-  N  =  ( normCV `  U )
7 nvnd.8 . . . 4  |-  D  =  ( IndMet `  U )
81, 5, 6, 7imsdval 21257 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  Z  e.  X )  ->  ( A D Z )  =  ( N `  ( A ( -v `  U ) Z ) ) )
94, 8mpd3an3 1278 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A D Z )  =  ( N `  ( A ( -v `  U ) Z ) ) )
10 eqid 2285 . . . . . 6  |-  ( +v
`  U )  =  ( +v `  U
)
11 eqid 2285 . . . . . 6  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
121, 10, 11, 5nvmval 21202 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  Z  e.  X )  ->  ( A ( -v `  U ) Z )  =  ( A ( +v `  U ) ( -u 1 ( .s OLD `  U
) Z ) ) )
134, 12mpd3an3 1278 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A ( -v `  U ) Z )  =  ( A ( +v `  U ) ( -u 1 ( .s OLD `  U
) Z ) ) )
14 neg1cn 9815 . . . . . . 7  |-  -u 1  e.  CC
1511, 2nvsz 21198 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC )  ->  ( -u 1 ( .s OLD `  U ) Z )  =  Z )
1614, 15mpan2 652 . . . . . 6  |-  ( U  e.  NrmCVec  ->  ( -u 1
( .s OLD `  U
) Z )  =  Z )
1716oveq2d 5876 . . . . 5  |-  ( U  e.  NrmCVec  ->  ( A ( +v `  U ) ( -u 1 ( .s OLD `  U
) Z ) )  =  ( A ( +v `  U ) Z ) )
1817adantr 451 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) Z ) )  =  ( A ( +v `  U
) Z ) )
191, 10, 2nv0rid 21195 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A ( +v `  U ) Z )  =  A )
2013, 18, 193eqtrd 2321 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A ( -v `  U ) Z )  =  A )
2120fveq2d 5531 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  ( A
( -v `  U
) Z ) )  =  ( N `  A ) )
229, 21eqtr2d 2318 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  A )  =  ( A D Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   ` cfv 5257  (class class class)co 5860   CCcc 8737   1c1 8740   -ucneg 9040   NrmCVeccnv 21142   +vcpv 21143   BaseSetcba 21144   .s
OLDcns 21145   0veccn0v 21146   -vcnsb 21147   normCVcnmcv 21148   IndMetcims 21149
This theorem is referenced by:  nvlmle  21267  ubthlem1  21451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4316  df-so 4317  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-pnf 8871  df-mnf 8872  df-ltxr 8874  df-sub 9041  df-neg 9042  df-grpo 20860  df-gid 20861  df-ginv 20862  df-gdiv 20863  df-ablo 20951  df-vc 21104  df-nv 21150  df-va 21153  df-ba 21154  df-sm 21155  df-0v 21156  df-vs 21157  df-nmcv 21158  df-ims 21159
  Copyright terms: Public domain W3C validator