MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvz Unicode version

Theorem nvz 21227
Description: The norm of a vector is zero iff the vector is zero. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvz.1  |-  X  =  ( BaseSet `  U )
nvz.5  |-  Z  =  ( 0vec `  U
)
nvz.6  |-  N  =  ( normCV `  U )
Assertion
Ref Expression
nvz  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( N `  A
)  =  0  <->  A  =  Z ) )

Proof of Theorem nvz
StepHypRef Expression
1 nvz.1 . . . . . 6  |-  X  =  ( BaseSet `  U )
2 eqid 2284 . . . . . 6  |-  ( +v
`  U )  =  ( +v `  U
)
3 eqid 2284 . . . . . 6  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
4 nvz.5 . . . . . 6  |-  Z  =  ( 0vec `  U
)
5 nvz.6 . . . . . 6  |-  N  =  ( normCV `  U )
61, 2, 3, 4, 5nvi 21162 . . . . 5  |-  ( U  e.  NrmCVec  ->  ( <. ( +v `  U ) ,  ( .s OLD `  U
) >.  e.  CVec OLD  /\  N : X --> RR  /\  A. x  e.  X  ( ( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y ( .s
OLD `  U )
x ) )  =  ( ( abs `  y
)  x.  ( N `
 x ) )  /\  A. y  e.  X  ( N `  ( x ( +v
`  U ) y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) ) )
76simp3d 974 . . . 4  |-  ( U  e.  NrmCVec  ->  A. x  e.  X  ( ( ( N `
 x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y
( .s OLD `  U
) x ) )  =  ( ( abs `  y )  x.  ( N `  x )
)  /\  A. y  e.  X  ( N `  ( x ( +v
`  U ) y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) )
8 simp1 960 . . . . 5  |-  ( ( ( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y ( .s
OLD `  U )
x ) )  =  ( ( abs `  y
)  x.  ( N `
 x ) )  /\  A. y  e.  X  ( N `  ( x ( +v
`  U ) y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) )  ->  ( ( N `  x )  =  0  ->  x  =  Z ) )
98ralimi 2619 . . . 4  |-  ( A. x  e.  X  (
( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y ( .s
OLD `  U )
x ) )  =  ( ( abs `  y
)  x.  ( N `
 x ) )  /\  A. y  e.  X  ( N `  ( x ( +v
`  U ) y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) )  ->  A. x  e.  X  ( ( N `  x )  =  0  ->  x  =  Z ) )
10 fveq2 5485 . . . . . . 7  |-  ( x  =  A  ->  ( N `  x )  =  ( N `  A ) )
1110eqeq1d 2292 . . . . . 6  |-  ( x  =  A  ->  (
( N `  x
)  =  0  <->  ( N `  A )  =  0 ) )
12 eqeq1 2290 . . . . . 6  |-  ( x  =  A  ->  (
x  =  Z  <->  A  =  Z ) )
1311, 12imbi12d 313 . . . . 5  |-  ( x  =  A  ->  (
( ( N `  x )  =  0  ->  x  =  Z )  <->  ( ( N `
 A )  =  0  ->  A  =  Z ) ) )
1413rspccv 2882 . . . 4  |-  ( A. x  e.  X  (
( N `  x
)  =  0  ->  x  =  Z )  ->  ( A  e.  X  ->  ( ( N `  A )  =  0  ->  A  =  Z ) ) )
157, 9, 143syl 20 . . 3  |-  ( U  e.  NrmCVec  ->  ( A  e.  X  ->  ( ( N `  A )  =  0  ->  A  =  Z ) ) )
1615imp 420 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( N `  A
)  =  0  ->  A  =  Z )
)
17 fveq2 5485 . . . . 5  |-  ( A  =  Z  ->  ( N `  A )  =  ( N `  Z ) )
184, 5nvz0 21226 . . . . 5  |-  ( U  e.  NrmCVec  ->  ( N `  Z )  =  0 )
1917, 18sylan9eqr 2338 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  =  Z )  ->  ( N `  A )  =  0 )
2019ex 425 . . 3  |-  ( U  e.  NrmCVec  ->  ( A  =  Z  ->  ( N `  A )  =  0 ) )
2120adantr 453 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A  =  Z  ->  ( N `  A )  =  0 ) )
2216, 21impbid 185 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( N `  A
)  =  0  <->  A  =  Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1628    e. wcel 1688   A.wral 2544   <.cop 3644   class class class wbr 4024   -->wf 5217   ` cfv 5221  (class class class)co 5819   CCcc 8730   RRcr 8731   0cc0 8732    + caddc 8735    x. cmul 8737    <_ cle 8863   abscabs 11713   CVec
OLDcvc 21093   NrmCVeccnv 21132   +vcpv 21133   BaseSetcba 21134   .s
OLDcns 21135   0veccn0v 21136   normCVcnmcv 21138
This theorem is referenced by:  nvgt0  21233  nv1  21234  imsmetlem  21251  ipz  21287  nmlno0lem  21363  nmblolbii  21369  blocnilem  21374  siii  21423  hlipgt0  21485
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-sup 7189  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-rp 10350  df-seq 11041  df-exp 11099  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-grpo 20850  df-gid 20851  df-ginv 20852  df-ablo 20941  df-vc 21094  df-nv 21140  df-va 21143  df-ba 21144  df-sm 21145  df-0v 21146  df-nmcv 21148
  Copyright terms: Public domain W3C validator