MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1add Unicode version

Theorem o1add 12081
Description: The sum of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Fan Zheng, 14-Jul-2016.)
Assertion
Ref Expression
o1add  |-  ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  ->  ( F  o F  +  G
)  e.  O ( 1 ) )
Dummy variables  x  y  m  n are mutually distinct and distinct from all other variables.

Proof of Theorem o1add
StepHypRef Expression
1 readdcl 8815 . 2  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  y )  e.  RR )
2 addcl 8814 . 2  |-  ( ( m  e.  CC  /\  n  e.  CC )  ->  ( m  +  n
)  e.  CC )
3 simp2l 983 . . . . . 6  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  m  e.  CC )
4 simp2r 984 . . . . . 6  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  n  e.  CC )
53, 4addcld 8849 . . . . 5  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( m  +  n )  e.  CC )
65abscld 11912 . . . 4  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( abs `  (
m  +  n ) )  e.  RR )
73abscld 11912 . . . . 5  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( abs `  m
)  e.  RR )
84abscld 11912 . . . . 5  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( abs `  n
)  e.  RR )
97, 8readdcld 8857 . . . 4  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( ( abs `  m )  +  ( abs `  n ) )  e.  RR )
10 simp1l 981 . . . . 5  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  x  e.  RR )
11 simp1r 982 . . . . 5  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  y  e.  RR )
1210, 11readdcld 8857 . . . 4  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( x  +  y )  e.  RR )
133, 4abstrid 11932 . . . 4  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( abs `  (
m  +  n ) )  <_  ( ( abs `  m )  +  ( abs `  n
) ) )
14 simp3l 985 . . . . 5  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( abs `  m
)  <_  x )
15 simp3r 986 . . . . 5  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( abs `  n
)  <_  y )
167, 8, 10, 11, 14, 15le2addd 9385 . . . 4  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( ( abs `  m )  +  ( abs `  n ) )  <_  ( x  +  y ) )
176, 9, 12, 13, 16letrd 8968 . . 3  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( abs `  (
m  +  n ) )  <_  ( x  +  y ) )
18173expia 1155 . 2  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC ) )  -> 
( ( ( abs `  m )  <_  x  /\  ( abs `  n
)  <_  y )  ->  ( abs `  (
m  +  n ) )  <_  ( x  +  y ) ) )
191, 2, 18o1of2 12080 1  |-  ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  ->  ( F  o F  +  G
)  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 936    e. wcel 1685   class class class wbr 4024   ` cfv 5221  (class class class)co 5819    o Fcof 6037   CCcc 8730   RRcr 8731    + caddc 8735    <_ cle 8863   abscabs 11713   O ( 1 )co1 11954
This theorem is referenced by:  o1add2  12091  o1dif  12097  fsumo1  12264  mudivsum  20673  selberglem2  20689  pntrsumo1  20708
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-er 6655  df-pm 6770  df-en 6859  df-dom 6860  df-sdom 6861  df-sup 7189  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-rp 10350  df-ico 10656  df-seq 11041  df-exp 11099  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-o1 11958
  Copyright terms: Public domain W3C validator