MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1co Unicode version

Theorem o1co 12267
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
o1co.1  |-  ( ph  ->  F : A --> CC )
o1co.2  |-  ( ph  ->  F  e.  O ( 1 ) )
o1co.3  |-  ( ph  ->  G : B --> A )
o1co.4  |-  ( ph  ->  B  C_  RR )
o1co.5  |-  ( (
ph  /\  m  e.  RR )  ->  E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  ( G `  y ) ) )
Assertion
Ref Expression
o1co  |-  ( ph  ->  ( F  o.  G
)  e.  O ( 1 ) )
Distinct variable groups:    x, m, y, A    m, F, x, y    m, G, x, y    ph, m, x, y    B, m, x, y

Proof of Theorem o1co
Dummy variables  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1co.2 . . . 4  |-  ( ph  ->  F  e.  O ( 1 ) )
2 o1co.1 . . . . 5  |-  ( ph  ->  F : A --> CC )
3 fdm 5499 . . . . . . 7  |-  ( F : A --> CC  ->  dom 
F  =  A )
42, 3syl 15 . . . . . 6  |-  ( ph  ->  dom  F  =  A )
5 o1dm 12211 . . . . . . 7  |-  ( F  e.  O ( 1 )  ->  dom  F  C_  RR )
61, 5syl 15 . . . . . 6  |-  ( ph  ->  dom  F  C_  RR )
74, 6eqsstr3d 3299 . . . . 5  |-  ( ph  ->  A  C_  RR )
8 elo12 12208 . . . . 5  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( F  e.  O
( 1 )  <->  E. m  e.  RR  E. n  e.  RR  A. z  e.  A  ( m  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  n
) ) )
92, 7, 8syl2anc 642 . . . 4  |-  ( ph  ->  ( F  e.  O
( 1 )  <->  E. m  e.  RR  E. n  e.  RR  A. z  e.  A  ( m  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  n
) ) )
101, 9mpbid 201 . . 3  |-  ( ph  ->  E. m  e.  RR  E. n  e.  RR  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )
11 o1co.5 . . . . 5  |-  ( (
ph  /\  m  e.  RR )  ->  E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  ( G `  y ) ) )
12 reeanv 2792 . . . . . 6  |-  ( E. x  e.  RR  E. n  e.  RR  ( A. y  e.  B  ( x  <_  y  ->  m  <_  ( G `  y ) )  /\  A. z  e.  A  ( m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  <-> 
( E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  ( G `  y ) )  /\  E. n  e.  RR  A. z  e.  A  ( m  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  n
) ) )
13 o1co.3 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  G : B --> A )
1413ad3antrrr 710 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  ->  G : B --> A )
15 ffvelrn 5770 . . . . . . . . . . . . . . . 16  |-  ( ( G : B --> A  /\  y  e.  B )  ->  ( G `  y
)  e.  A )
1614, 15sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  y  e.  B
)  ->  ( G `  y )  e.  A
)
17 breq2 4129 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( G `  y )  ->  (
m  <_  z  <->  m  <_  ( G `  y ) ) )
18 fveq2 5632 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( G `  y )  ->  ( F `  z )  =  ( F `  ( G `  y ) ) )
1918fveq2d 5636 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( G `  y )  ->  ( abs `  ( F `  z ) )  =  ( abs `  ( F `  ( G `  y ) ) ) )
2019breq1d 4135 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( G `  y )  ->  (
( abs `  ( F `  z )
)  <_  n  <->  ( abs `  ( F `  ( G `  y )
) )  <_  n
) )
2117, 20imbi12d 311 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( G `  y )  ->  (
( m  <_  z  ->  ( abs `  ( F `  z )
)  <_  n )  <->  ( m  <_  ( G `  y )  ->  ( abs `  ( F `  ( G `  y ) ) )  <_  n
) ) )
2221rspcva 2967 . . . . . . . . . . . . . . 15  |-  ( ( ( G `  y
)  e.  A  /\  A. z  e.  A  ( m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  ->  ( m  <_ 
( G `  y
)  ->  ( abs `  ( F `  ( G `  y )
) )  <_  n
) )
2316, 22sylan 457 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  y  e.  B )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  ->  ( m  <_ 
( G `  y
)  ->  ( abs `  ( F `  ( G `  y )
) )  <_  n
) )
2423an32s 779 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  /\  y  e.  B
)  ->  ( m  <_  ( G `  y
)  ->  ( abs `  ( F `  ( G `  y )
) )  <_  n
) )
2514adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  ( m  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  n
) )  ->  G : B --> A )
26 fvco3 5703 . . . . . . . . . . . . . . . 16  |-  ( ( G : B --> A  /\  y  e.  B )  ->  ( ( F  o.  G ) `  y
)  =  ( F `
 ( G `  y ) ) )
2725, 26sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  /\  y  e.  B
)  ->  ( ( F  o.  G ) `  y )  =  ( F `  ( G `
 y ) ) )
2827fveq2d 5636 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  /\  y  e.  B
)  ->  ( abs `  ( ( F  o.  G ) `  y
) )  =  ( abs `  ( F `
 ( G `  y ) ) ) )
2928breq1d 4135 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  /\  y  e.  B
)  ->  ( ( abs `  ( ( F  o.  G ) `  y ) )  <_  n 
<->  ( abs `  ( F `  ( G `  y ) ) )  <_  n ) )
3024, 29sylibrd 225 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  /\  y  e.  B
)  ->  ( m  <_  ( G `  y
)  ->  ( abs `  ( ( F  o.  G ) `  y
) )  <_  n
) )
3130imim2d 48 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  /\  y  e.  B
)  ->  ( (
x  <_  y  ->  m  <_  ( G `  y ) )  -> 
( x  <_  y  ->  ( abs `  (
( F  o.  G
) `  y )
)  <_  n )
) )
3231ralimdva 2706 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  ( m  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  n
) )  ->  ( A. y  e.  B  ( x  <_  y  ->  m  <_  ( G `  y ) )  ->  A. y  e.  B  ( x  <_  y  -> 
( abs `  (
( F  o.  G
) `  y )
)  <_  n )
) )
3332expimpd 586 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  ->  ( ( A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n )  /\  A. y  e.  B  ( x  <_  y  ->  m  <_  ( G `  y ) ) )  ->  A. y  e.  B  ( x  <_  y  -> 
( abs `  (
( F  o.  G
) `  y )
)  <_  n )
) )
3433ancomsd 440 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  ->  ( ( A. y  e.  B  (
x  <_  y  ->  m  <_  ( G `  y ) )  /\  A. z  e.  A  ( m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  ->  A. y  e.  B  ( x  <_  y  -> 
( abs `  (
( F  o.  G
) `  y )
)  <_  n )
) )
3534reximdva 2740 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  ->  ( E. n  e.  RR  ( A. y  e.  B  ( x  <_  y  ->  m  <_  ( G `  y ) )  /\  A. z  e.  A  ( m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  ->  E. n  e.  RR  A. y  e.  B  ( x  <_  y  ->  ( abs `  ( ( F  o.  G ) `
 y ) )  <_  n ) ) )
3635reximdva 2740 . . . . . 6  |-  ( (
ph  /\  m  e.  RR )  ->  ( E. x  e.  RR  E. n  e.  RR  ( A. y  e.  B  ( x  <_  y  ->  m  <_  ( G `  y ) )  /\  A. z  e.  A  ( m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  ->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  (
x  <_  y  ->  ( abs `  ( ( F  o.  G ) `
 y ) )  <_  n ) ) )
3712, 36syl5bir 209 . . . . 5  |-  ( (
ph  /\  m  e.  RR )  ->  ( ( E. x  e.  RR  A. y  e.  B  ( x  <_  y  ->  m  <_  ( G `  y ) )  /\  E. n  e.  RR  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  ->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  (
x  <_  y  ->  ( abs `  ( ( F  o.  G ) `
 y ) )  <_  n ) ) )
3811, 37mpand 656 . . . 4  |-  ( (
ph  /\  m  e.  RR )  ->  ( E. n  e.  RR  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n )  ->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  (
x  <_  y  ->  ( abs `  ( ( F  o.  G ) `
 y ) )  <_  n ) ) )
3938rexlimdva 2752 . . 3  |-  ( ph  ->  ( E. m  e.  RR  E. n  e.  RR  A. z  e.  A  ( m  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  n
)  ->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  ( abs `  ( ( F  o.  G ) `  y
) )  <_  n
) ) )
4010, 39mpd 14 . 2  |-  ( ph  ->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  (
x  <_  y  ->  ( abs `  ( ( F  o.  G ) `
 y ) )  <_  n ) )
41 fco 5504 . . . 4  |-  ( ( F : A --> CC  /\  G : B --> A )  ->  ( F  o.  G ) : B --> CC )
422, 13, 41syl2anc 642 . . 3  |-  ( ph  ->  ( F  o.  G
) : B --> CC )
43 o1co.4 . . 3  |-  ( ph  ->  B  C_  RR )
44 elo12 12208 . . 3  |-  ( ( ( F  o.  G
) : B --> CC  /\  B  C_  RR )  -> 
( ( F  o.  G )  e.  O
( 1 )  <->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  ( abs `  ( ( F  o.  G ) `  y
) )  <_  n
) ) )
4542, 43, 44syl2anc 642 . 2  |-  ( ph  ->  ( ( F  o.  G )  e.  O
( 1 )  <->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  ( abs `  ( ( F  o.  G ) `  y
) )  <_  n
) ) )
4640, 45mpbird 223 1  |-  ( ph  ->  ( F  o.  G
)  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1647    e. wcel 1715   A.wral 2628   E.wrex 2629    C_ wss 3238   class class class wbr 4125   dom cdm 4792    o. ccom 4796   -->wf 5354   ` cfv 5358   CCcc 8882   RRcr 8883    <_ cle 9015   abscabs 11926   O ( 1 )co1 12167
This theorem is referenced by:  o1compt  12268
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-pre-lttri 8958  ax-pre-lttrn 8959
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-po 4417  df-so 4418  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-er 6802  df-pm 6918  df-en 7007  df-dom 7008  df-sdom 7009  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-ico 10815  df-o1 12171
  Copyright terms: Public domain W3C validator