MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1compt Unicode version

Theorem o1compt 12063
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
o1compt.1  |-  ( ph  ->  F : A --> CC )
o1compt.2  |-  ( ph  ->  F  e.  O ( 1 ) )
o1compt.3  |-  ( (
ph  /\  y  e.  B )  ->  C  e.  A )
o1compt.4  |-  ( ph  ->  B  C_  RR )
o1compt.5  |-  ( (
ph  /\  m  e.  RR )  ->  E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  C ) )
Assertion
Ref Expression
o1compt  |-  ( ph  ->  ( F  o.  (
y  e.  B  |->  C ) )  e.  O
( 1 ) )
Distinct variable groups:    x, m, y, A    B, m, x, y    C, m, x    ph, m, x, y    m, F, x
Allowed substitution hints:    C( y)    F( y)

Proof of Theorem o1compt
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 o1compt.1 . 2  |-  ( ph  ->  F : A --> CC )
2 o1compt.2 . 2  |-  ( ph  ->  F  e.  O ( 1 ) )
3 o1compt.3 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  C  e.  A )
4 eqid 2285 . . 3  |-  ( y  e.  B  |->  C )  =  ( y  e.  B  |->  C )
53, 4fmptd 5686 . 2  |-  ( ph  ->  ( y  e.  B  |->  C ) : B --> A )
6 o1compt.4 . 2  |-  ( ph  ->  B  C_  RR )
7 o1compt.5 . . 3  |-  ( (
ph  /\  m  e.  RR )  ->  E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  C ) )
8 nfv 1607 . . . . . . . 8  |-  F/ y  x  <_  z
9 nfcv 2421 . . . . . . . . 9  |-  F/_ y
m
10 nfcv 2421 . . . . . . . . 9  |-  F/_ y  <_
11 nfmpt1 4111 . . . . . . . . . 10  |-  F/_ y
( y  e.  B  |->  C )
12 nfcv 2421 . . . . . . . . . 10  |-  F/_ y
z
1311, 12nffv 5534 . . . . . . . . 9  |-  F/_ y
( ( y  e.  B  |->  C ) `  z )
149, 10, 13nfbr 4069 . . . . . . . 8  |-  F/ y  m  <_  ( (
y  e.  B  |->  C ) `  z )
158, 14nfim 1771 . . . . . . 7  |-  F/ y ( x  <_  z  ->  m  <_  ( (
y  e.  B  |->  C ) `  z ) )
16 nfv 1607 . . . . . . 7  |-  F/ z ( x  <_  y  ->  m  <_  ( (
y  e.  B  |->  C ) `  y ) )
17 breq2 4029 . . . . . . . 8  |-  ( z  =  y  ->  (
x  <_  z  <->  x  <_  y ) )
18 fveq2 5527 . . . . . . . . 9  |-  ( z  =  y  ->  (
( y  e.  B  |->  C ) `  z
)  =  ( ( y  e.  B  |->  C ) `  y ) )
1918breq2d 4037 . . . . . . . 8  |-  ( z  =  y  ->  (
m  <_  ( (
y  e.  B  |->  C ) `  z )  <-> 
m  <_  ( (
y  e.  B  |->  C ) `  y ) ) )
2017, 19imbi12d 311 . . . . . . 7  |-  ( z  =  y  ->  (
( x  <_  z  ->  m  <_  ( (
y  e.  B  |->  C ) `  z ) )  <->  ( x  <_ 
y  ->  m  <_  ( ( y  e.  B  |->  C ) `  y
) ) ) )
2115, 16, 20cbvral 2762 . . . . . 6  |-  ( A. z  e.  B  (
x  <_  z  ->  m  <_  ( ( y  e.  B  |->  C ) `
 z ) )  <->  A. y  e.  B  ( x  <_  y  ->  m  <_  ( ( y  e.  B  |->  C ) `
 y ) ) )
22 simpr 447 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  B )  ->  y  e.  B )
234fvmpt2 5610 . . . . . . . . . 10  |-  ( ( y  e.  B  /\  C  e.  A )  ->  ( ( y  e.  B  |->  C ) `  y )  =  C )
2422, 3, 23syl2anc 642 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  B )  ->  (
( y  e.  B  |->  C ) `  y
)  =  C )
2524breq2d 4037 . . . . . . . 8  |-  ( (
ph  /\  y  e.  B )  ->  (
m  <_  ( (
y  e.  B  |->  C ) `  y )  <-> 
m  <_  C )
)
2625imbi2d 307 . . . . . . 7  |-  ( (
ph  /\  y  e.  B )  ->  (
( x  <_  y  ->  m  <_  ( (
y  e.  B  |->  C ) `  y ) )  <->  ( x  <_ 
y  ->  m  <_  C ) ) )
2726ralbidva 2561 . . . . . 6  |-  ( ph  ->  ( A. y  e.  B  ( x  <_ 
y  ->  m  <_  ( ( y  e.  B  |->  C ) `  y
) )  <->  A. y  e.  B  ( x  <_  y  ->  m  <_  C ) ) )
2821, 27syl5bb 248 . . . . 5  |-  ( ph  ->  ( A. z  e.  B  ( x  <_ 
z  ->  m  <_  ( ( y  e.  B  |->  C ) `  z
) )  <->  A. y  e.  B  ( x  <_  y  ->  m  <_  C ) ) )
2928rexbidv 2566 . . . 4  |-  ( ph  ->  ( E. x  e.  RR  A. z  e.  B  ( x  <_ 
z  ->  m  <_  ( ( y  e.  B  |->  C ) `  z
) )  <->  E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  C ) ) )
3029adantr 451 . . 3  |-  ( (
ph  /\  m  e.  RR )  ->  ( E. x  e.  RR  A. z  e.  B  (
x  <_  z  ->  m  <_  ( ( y  e.  B  |->  C ) `
 z ) )  <->  E. x  e.  RR  A. y  e.  B  ( x  <_  y  ->  m  <_  C ) ) )
317, 30mpbird 223 . 2  |-  ( (
ph  /\  m  e.  RR )  ->  E. x  e.  RR  A. z  e.  B  ( x  <_ 
z  ->  m  <_  ( ( y  e.  B  |->  C ) `  z
) ) )
321, 2, 5, 6, 31o1co 12062 1  |-  ( ph  ->  ( F  o.  (
y  e.  B  |->  C ) )  e.  O
( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686   A.wral 2545   E.wrex 2546    C_ wss 3154   class class class wbr 4025    e. cmpt 4079    o. ccom 4695   -->wf 5253   ` cfv 5257   CCcc 8737   RRcr 8738    <_ cle 8870   O ( 1 )co1 11962
This theorem is referenced by:  dchrisum0  20671
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-pre-lttri 8813  ax-pre-lttrn 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4316  df-so 4317  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-er 6662  df-pm 6777  df-en 6866  df-dom 6867  df-sdom 6868  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-ico 10664  df-o1 11966
  Copyright terms: Public domain W3C validator