MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1const Unicode version

Theorem o1const 12044
Description: A constant function is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
o1const  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  (
x  e.  A  |->  B )  e.  O ( 1 ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem o1const
StepHypRef Expression
1 rlimconst 11969 . 2  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  (
x  e.  A  |->  B )  ~~> r  B )
2 rlimo1 12041 . 2  |-  ( ( x  e.  A  |->  B )  ~~> r  B  -> 
( x  e.  A  |->  B )  e.  O
( 1 ) )
31, 2syl 17 1  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  (
x  e.  A  |->  B )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    e. wcel 1621    C_ wss 3113   class class class wbr 3983    e. cmpt 4037   CCcc 8689   RRcr 8690    ~~> r crli 11910   O ( 1 )co1 11911
This theorem is referenced by:  fsumo1  12221  dchrmusum2  20591  dchrvmasumlem2  20595  dchrvmasumiflem2  20599  dchrisum0fno1  20608  rpvmasum2  20609  dchrisum0lem1  20613  dchrisum0lem2a  20614  dchrisum0lem2  20615  dchrmusumlem  20619  rplogsum  20624  dirith2  20625  mulogsumlem  20628  mulogsum  20629  mulog2sumlem2  20632  mulog2sumlem3  20633  vmalogdivsum2  20635  2vmadivsumlem  20637  selberglem1  20642  selberg3lem1  20654  selberg4lem1  20657  selberg4  20658  pntrmax  20661  pntrsumo1  20662  selberg3r  20666  selberg4r  20667  selberg34r  20668  pntrlog2bndlem2  20675  pntrlog2bndlem3  20676  pntrlog2bndlem4  20677
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768  ax-pre-sup 8769
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-2nd 6043  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-er 6614  df-pm 6729  df-en 6818  df-dom 6819  df-sdom 6820  df-sup 7148  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-div 9378  df-n 9701  df-2 9758  df-3 9759  df-n0 9919  df-z 9978  df-uz 10184  df-rp 10308  df-ico 10614  df-seq 10999  df-exp 11057  df-cj 11535  df-re 11536  df-im 11537  df-sqr 11671  df-abs 11672  df-rlim 11914  df-o1 11915
  Copyright terms: Public domain W3C validator