MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1const Structured version   Unicode version

Theorem o1const 12413
Description: A constant function is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
o1const  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  (
x  e.  A  |->  B )  e.  O ( 1 ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem o1const
StepHypRef Expression
1 rlimconst 12338 . 2  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  (
x  e.  A  |->  B )  ~~> r  B )
2 rlimo1 12410 . 2  |-  ( ( x  e.  A  |->  B )  ~~> r  B  -> 
( x  e.  A  |->  B )  e.  O
( 1 ) )
31, 2syl 16 1  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  (
x  e.  A  |->  B )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1725    C_ wss 3320   class class class wbr 4212    e. cmpt 4266   CCcc 8988   RRcr 8989    ~~> r crli 12279   O ( 1 )co1 12280
This theorem is referenced by:  fsumo1  12591  dchrmusum2  21188  dchrvmasumlem2  21192  dchrvmasumiflem2  21196  dchrisum0fno1  21205  rpvmasum2  21206  dchrisum0lem1  21210  dchrisum0lem2a  21211  dchrisum0lem2  21212  dchrmusumlem  21216  rplogsum  21221  dirith2  21222  mulogsumlem  21225  mulogsum  21226  mulog2sumlem2  21229  mulog2sumlem3  21230  vmalogdivsum2  21232  2vmadivsumlem  21234  selberglem1  21239  selberg3lem1  21251  selberg4lem1  21254  selberg4  21255  pntrmax  21258  pntrsumo1  21259  selberg3r  21263  selberg4r  21264  selberg34r  21265  pntrlog2bndlem2  21272  pntrlog2bndlem3  21273  pntrlog2bndlem4  21274
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-ico 10922  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-rlim 12283  df-o1 12284
  Copyright terms: Public domain W3C validator