MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1cxp Unicode version

Theorem o1cxp 20217
Description: An eventually bounded function taken to a nonnegative power is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
o1cxp.1  |-  ( ph  ->  C  e.  CC )
o1cxp.2  |-  ( ph  ->  0  <_  ( Re `  C ) )
o1cxp.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
o1cxp.4  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  O
( 1 ) )
Assertion
Ref Expression
o1cxp  |-  ( ph  ->  ( x  e.  A  |->  ( B  ^ c  C ) )  e.  O ( 1 ) )
Distinct variable groups:    x, A    x, C    ph, x
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem o1cxp
StepHypRef Expression
1 o1cxp.4 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  O
( 1 ) )
2 o1f 11954 . . . . 5  |-  ( ( x  e.  A  |->  B )  e.  O ( 1 )  ->  (
x  e.  A  |->  B ) : dom  (  x  e.  A  |->  B ) --> CC )
31, 2syl 17 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B ) : dom  (  x  e.  A  |->  B ) --> CC )
4 o1cxp.3 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
54ralrimiva 2599 . . . . . 6  |-  ( ph  ->  A. x  e.  A  B  e.  V )
6 dmmptg 5143 . . . . . 6  |-  ( A. x  e.  A  B  e.  V  ->  dom  (  x  e.  A  |->  B )  =  A )
75, 6syl 17 . . . . 5  |-  ( ph  ->  dom  (  x  e.  A  |->  B )  =  A )
87feq2d 5304 . . . 4  |-  ( ph  ->  ( ( x  e.  A  |->  B ) : dom  (  x  e.  A  |->  B ) --> CC  <->  ( x  e.  A  |->  B ) : A --> CC ) )
93, 8mpbid 203 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> CC )
10 o1bdd 11956 . . 3  |-  ( ( ( x  e.  A  |->  B )  e.  O
( 1 )  /\  ( x  e.  A  |->  B ) : A --> CC )  ->  E. y  e.  RR  E. m  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( ( x  e.  A  |->  B ) `  z ) )  <_  m ) )
111, 9, 10syl2anc 645 . 2  |-  ( ph  ->  E. y  e.  RR  E. m  e.  RR  A. z  e.  A  (
y  <_  z  ->  ( abs `  ( ( x  e.  A  |->  B ) `  z ) )  <_  m )
)
12 simpr 449 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
13 eqid 2256 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
1413fvmpt2 5528 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
1512, 4, 14syl2anc 645 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  B )
1615oveq1d 5793 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  B ) `  x )  ^ c  C )  =  ( B  ^ c  C
) )
17 ovex 5803 . . . . . . . . . . . . . . 15  |-  ( B  ^ c  C )  e.  _V
18 eqid 2256 . . . . . . . . . . . . . . . 16  |-  ( x  e.  A  |->  ( B  ^ c  C ) )  =  ( x  e.  A  |->  ( B  ^ c  C ) )
1918fvmpt2 5528 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  A  /\  ( B  ^ c  C )  e.  _V )  ->  ( ( x  e.  A  |->  ( B  ^ c  C ) ) `  x )  =  ( B  ^ c  C ) )
2012, 17, 19sylancl 646 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  ( B  ^ c  C ) ) `  x )  =  ( B  ^ c  C
) )
2116, 20eqtr4d 2291 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  B ) `  x )  ^ c  C )  =  ( ( x  e.  A  |->  ( B  ^ c  C ) ) `  x ) )
2221ralrimiva 2599 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  A  ( ( ( x  e.  A  |->  B ) `
 x )  ^ c  C )  =  ( ( x  e.  A  |->  ( B  ^ c  C ) ) `  x ) )
23 nfv 1629 . . . . . . . . . . . . 13  |-  F/ z ( ( ( x  e.  A  |->  B ) `
 x )  ^ c  C )  =  ( ( x  e.  A  |->  ( B  ^ c  C ) ) `  x )
24 nfmpt1 4069 . . . . . . . . . . . . . . . 16  |-  F/_ x
( x  e.  A  |->  B )
25 nfcv 2392 . . . . . . . . . . . . . . . 16  |-  F/_ x
z
2624, 25nffv 5451 . . . . . . . . . . . . . . 15  |-  F/_ x
( ( x  e.  A  |->  B ) `  z )
27 nfcv 2392 . . . . . . . . . . . . . . 15  |-  F/_ x  ^ c
28 nfcv 2392 . . . . . . . . . . . . . . 15  |-  F/_ x C
2926, 27, 28nfov 5801 . . . . . . . . . . . . . 14  |-  F/_ x
( ( ( x  e.  A  |->  B ) `
 z )  ^ c  C )
30 nfmpt1 4069 . . . . . . . . . . . . . . 15  |-  F/_ x
( x  e.  A  |->  ( B  ^ c  C ) )
3130, 25nffv 5451 . . . . . . . . . . . . . 14  |-  F/_ x
( ( x  e.  A  |->  ( B  ^ c  C ) ) `  z )
3229, 31nfeq 2399 . . . . . . . . . . . . 13  |-  F/ x
( ( ( x  e.  A  |->  B ) `
 z )  ^ c  C )  =  ( ( x  e.  A  |->  ( B  ^ c  C ) ) `  z )
33 fveq2 5444 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
( x  e.  A  |->  B ) `  x
)  =  ( ( x  e.  A  |->  B ) `  z ) )
3433oveq1d 5793 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
( ( x  e.  A  |->  B ) `  x )  ^ c  C )  =  ( ( ( x  e.  A  |->  B ) `  z )  ^ c  C ) )
35 fveq2 5444 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
( x  e.  A  |->  ( B  ^ c  C ) ) `  x )  =  ( ( x  e.  A  |->  ( B  ^ c  C ) ) `  z ) )
3634, 35eqeq12d 2270 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( ( ( x  e.  A  |->  B ) `
 x )  ^ c  C )  =  ( ( x  e.  A  |->  ( B  ^ c  C ) ) `  x )  <->  ( (
( x  e.  A  |->  B ) `  z
)  ^ c  C
)  =  ( ( x  e.  A  |->  ( B  ^ c  C
) ) `  z
) ) )
3723, 32, 36cbvral 2730 . . . . . . . . . . . 12  |-  ( A. x  e.  A  (
( ( x  e.  A  |->  B ) `  x )  ^ c  C )  =  ( ( x  e.  A  |->  ( B  ^ c  C ) ) `  x )  <->  A. z  e.  A  ( (
( x  e.  A  |->  B ) `  z
)  ^ c  C
)  =  ( ( x  e.  A  |->  ( B  ^ c  C
) ) `  z
) )
3822, 37sylib 190 . . . . . . . . . . 11  |-  ( ph  ->  A. z  e.  A  ( ( ( x  e.  A  |->  B ) `
 z )  ^ c  C )  =  ( ( x  e.  A  |->  ( B  ^ c  C ) ) `  z ) )
3938r19.21bi 2614 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  A )  ->  (
( ( x  e.  A  |->  B ) `  z )  ^ c  C )  =  ( ( x  e.  A  |->  ( B  ^ c  C ) ) `  z ) )
4039ad2ant2r 730 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  RR  /\  m  e.  RR )
)  /\  ( z  e.  A  /\  ( abs `  ( ( x  e.  A  |->  B ) `
 z ) )  <_  m ) )  ->  ( ( ( x  e.  A  |->  B ) `  z )  ^ c  C )  =  ( ( x  e.  A  |->  ( B  ^ c  C ) ) `  z ) )
4140fveq2d 5448 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  RR  /\  m  e.  RR )
)  /\  ( z  e.  A  /\  ( abs `  ( ( x  e.  A  |->  B ) `
 z ) )  <_  m ) )  ->  ( abs `  (
( ( x  e.  A  |->  B ) `  z )  ^ c  C ) )  =  ( abs `  (
( x  e.  A  |->  ( B  ^ c  C ) ) `  z ) ) )
42 ffvelrn 5583 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  |->  B ) : A --> CC  /\  z  e.  A
)  ->  ( (
x  e.  A  |->  B ) `  z )  e.  CC )
439, 42sylan 459 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  A )  ->  (
( x  e.  A  |->  B ) `  z
)  e.  CC )
4443ad2ant2r 730 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  RR  /\  m  e.  RR )
)  /\  ( z  e.  A  /\  ( abs `  ( ( x  e.  A  |->  B ) `
 z ) )  <_  m ) )  ->  ( ( x  e.  A  |->  B ) `
 z )  e.  CC )
45 o1cxp.1 . . . . . . . . . 10  |-  ( ph  ->  C  e.  CC )
4645ad2antrr 709 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  RR  /\  m  e.  RR )
)  /\  ( z  e.  A  /\  ( abs `  ( ( x  e.  A  |->  B ) `
 z ) )  <_  m ) )  ->  C  e.  CC )
47 o1cxp.2 . . . . . . . . . 10  |-  ( ph  ->  0  <_  ( Re `  C ) )
4847ad2antrr 709 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  RR  /\  m  e.  RR )
)  /\  ( z  e.  A  /\  ( abs `  ( ( x  e.  A  |->  B ) `
 z ) )  <_  m ) )  ->  0  <_  (
Re `  C )
)
49 simprr 736 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  RR  /\  m  e.  RR ) )  ->  m  e.  RR )
50 0re 8792 . . . . . . . . . . 11  |-  0  e.  RR
51 ifcl 3561 . . . . . . . . . . 11  |-  ( ( m  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  m ,  m , 
0 )  e.  RR )
5249, 50, 51sylancl 646 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  RR  /\  m  e.  RR ) )  ->  if ( 0  <_  m ,  m ,  0 )  e.  RR )
5352adantr 453 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  RR  /\  m  e.  RR )
)  /\  ( z  e.  A  /\  ( abs `  ( ( x  e.  A  |->  B ) `
 z ) )  <_  m ) )  ->  if ( 0  <_  m ,  m ,  0 )  e.  RR )
5444abscld 11869 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  RR  /\  m  e.  RR )
)  /\  ( z  e.  A  /\  ( abs `  ( ( x  e.  A  |->  B ) `
 z ) )  <_  m ) )  ->  ( abs `  (
( x  e.  A  |->  B ) `  z
) )  e.  RR )
5549adantr 453 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  RR  /\  m  e.  RR )
)  /\  ( z  e.  A  /\  ( abs `  ( ( x  e.  A  |->  B ) `
 z ) )  <_  m ) )  ->  m  e.  RR )
56 simprr 736 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  RR  /\  m  e.  RR )
)  /\  ( z  e.  A  /\  ( abs `  ( ( x  e.  A  |->  B ) `
 z ) )  <_  m ) )  ->  ( abs `  (
( x  e.  A  |->  B ) `  z
) )  <_  m
)
57 max2 10468 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  m  e.  RR )  ->  m  <_  if (
0  <_  m ,  m ,  0 ) )
5850, 49, 57sylancr 647 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  RR  /\  m  e.  RR ) )  ->  m  <_  if ( 0  <_  m ,  m ,  0 ) )
5958adantr 453 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  RR  /\  m  e.  RR )
)  /\  ( z  e.  A  /\  ( abs `  ( ( x  e.  A  |->  B ) `
 z ) )  <_  m ) )  ->  m  <_  if ( 0  <_  m ,  m ,  0 ) )
6054, 55, 53, 56, 59letrd 8927 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  RR  /\  m  e.  RR )
)  /\  ( z  e.  A  /\  ( abs `  ( ( x  e.  A  |->  B ) `
 z ) )  <_  m ) )  ->  ( abs `  (
( x  e.  A  |->  B ) `  z
) )  <_  if ( 0  <_  m ,  m ,  0 ) )
6144, 46, 48, 53, 60abscxpbnd 20041 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  RR  /\  m  e.  RR )
)  /\  ( z  e.  A  /\  ( abs `  ( ( x  e.  A  |->  B ) `
 z ) )  <_  m ) )  ->  ( abs `  (
( ( x  e.  A  |->  B ) `  z )  ^ c  C ) )  <_ 
( ( if ( 0  <_  m ,  m ,  0 )  ^ c  ( Re
`  C ) )  x.  ( exp `  (
( abs `  C
)  x.  pi ) ) ) )
6241, 61eqbrtrrd 4005 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  RR  /\  m  e.  RR )
)  /\  ( z  e.  A  /\  ( abs `  ( ( x  e.  A  |->  B ) `
 z ) )  <_  m ) )  ->  ( abs `  (
( x  e.  A  |->  ( B  ^ c  C ) ) `  z ) )  <_ 
( ( if ( 0  <_  m ,  m ,  0 )  ^ c  ( Re
`  C ) )  x.  ( exp `  (
( abs `  C
)  x.  pi ) ) ) )
6362expr 601 . . . . . 6  |-  ( ( ( ph  /\  (
y  e.  RR  /\  m  e.  RR )
)  /\  z  e.  A )  ->  (
( abs `  (
( x  e.  A  |->  B ) `  z
) )  <_  m  ->  ( abs `  (
( x  e.  A  |->  ( B  ^ c  C ) ) `  z ) )  <_ 
( ( if ( 0  <_  m ,  m ,  0 )  ^ c  ( Re
`  C ) )  x.  ( exp `  (
( abs `  C
)  x.  pi ) ) ) ) )
6463imim2d 50 . . . . 5  |-  ( ( ( ph  /\  (
y  e.  RR  /\  m  e.  RR )
)  /\  z  e.  A )  ->  (
( y  <_  z  ->  ( abs `  (
( x  e.  A  |->  B ) `  z
) )  <_  m
)  ->  ( y  <_  z  ->  ( abs `  ( ( x  e.  A  |->  ( B  ^ c  C ) ) `  z ) )  <_ 
( ( if ( 0  <_  m ,  m ,  0 )  ^ c  ( Re
`  C ) )  x.  ( exp `  (
( abs `  C
)  x.  pi ) ) ) ) ) )
6564ralimdva 2594 . . . 4  |-  ( (
ph  /\  ( y  e.  RR  /\  m  e.  RR ) )  -> 
( A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( ( x  e.  A  |->  B ) `  z ) )  <_  m )  ->  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( ( x  e.  A  |->  ( B  ^ c  C ) ) `  z ) )  <_ 
( ( if ( 0  <_  m ,  m ,  0 )  ^ c  ( Re
`  C ) )  x.  ( exp `  (
( abs `  C
)  x.  pi ) ) ) ) ) )
664, 1o1mptrcl 12047 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
6745adantr 453 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
6866, 67cxpcld 20003 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( B  ^ c  C )  e.  CC )
6968, 18fmptd 5604 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( B  ^ c  C ) ) : A --> CC )
7069adantr 453 . . . . 5  |-  ( (
ph  /\  ( y  e.  RR  /\  m  e.  RR ) )  -> 
( x  e.  A  |->  ( B  ^ c  C ) ) : A --> CC )
71 o1dm 11955 . . . . . . . 8  |-  ( ( x  e.  A  |->  B )  e.  O ( 1 )  ->  dom  (  x  e.  A  |->  B )  C_  RR )
721, 71syl 17 . . . . . . 7  |-  ( ph  ->  dom  (  x  e.  A  |->  B )  C_  RR )
737, 72eqsstr3d 3174 . . . . . 6  |-  ( ph  ->  A  C_  RR )
7473adantr 453 . . . . 5  |-  ( (
ph  /\  ( y  e.  RR  /\  m  e.  RR ) )  ->  A  C_  RR )
75 simprl 735 . . . . 5  |-  ( (
ph  /\  ( y  e.  RR  /\  m  e.  RR ) )  -> 
y  e.  RR )
76 max1 10466 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  m  e.  RR )  ->  0  <_  if (
0  <_  m ,  m ,  0 ) )
7750, 49, 76sylancr 647 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  RR  /\  m  e.  RR ) )  -> 
0  <_  if (
0  <_  m ,  m ,  0 ) )
7845adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  RR  /\  m  e.  RR ) )  ->  C  e.  CC )
7978recld 11630 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  RR  /\  m  e.  RR ) )  -> 
( Re `  C
)  e.  RR )
8052, 77, 79recxpcld 20018 . . . . . 6  |-  ( (
ph  /\  ( y  e.  RR  /\  m  e.  RR ) )  -> 
( if ( 0  <_  m ,  m ,  0 )  ^ c  ( Re `  C ) )  e.  RR )
8178abscld 11869 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  RR  /\  m  e.  RR ) )  -> 
( abs `  C
)  e.  RR )
82 pire 19780 . . . . . . . 8  |-  pi  e.  RR
83 remulcl 8776 . . . . . . . 8  |-  ( ( ( abs `  C
)  e.  RR  /\  pi  e.  RR )  -> 
( ( abs `  C
)  x.  pi )  e.  RR )
8481, 82, 83sylancl 646 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  RR  /\  m  e.  RR ) )  -> 
( ( abs `  C
)  x.  pi )  e.  RR )
8584reefcld 12317 . . . . . 6  |-  ( (
ph  /\  ( y  e.  RR  /\  m  e.  RR ) )  -> 
( exp `  (
( abs `  C
)  x.  pi ) )  e.  RR )
8680, 85remulcld 8817 . . . . 5  |-  ( (
ph  /\  ( y  e.  RR  /\  m  e.  RR ) )  -> 
( ( if ( 0  <_  m ,  m ,  0 )  ^ c  ( Re
`  C ) )  x.  ( exp `  (
( abs `  C
)  x.  pi ) ) )  e.  RR )
87 elo12r 11953 . . . . . 6  |-  ( ( ( ( x  e.  A  |->  ( B  ^ c  C ) ) : A --> CC  /\  A  C_  RR )  /\  (
y  e.  RR  /\  ( ( if ( 0  <_  m ,  m ,  0 )  ^ c  ( Re
`  C ) )  x.  ( exp `  (
( abs `  C
)  x.  pi ) ) )  e.  RR )  /\  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( ( x  e.  A  |->  ( B  ^ c  C ) ) `  z ) )  <_ 
( ( if ( 0  <_  m ,  m ,  0 )  ^ c  ( Re
`  C ) )  x.  ( exp `  (
( abs `  C
)  x.  pi ) ) ) ) )  ->  ( x  e.  A  |->  ( B  ^ c  C ) )  e.  O ( 1 ) )
88873expia 1158 . . . . 5  |-  ( ( ( ( x  e.  A  |->  ( B  ^ c  C ) ) : A --> CC  /\  A  C_  RR )  /\  (
y  e.  RR  /\  ( ( if ( 0  <_  m ,  m ,  0 )  ^ c  ( Re
`  C ) )  x.  ( exp `  (
( abs `  C
)  x.  pi ) ) )  e.  RR ) )  ->  ( A. z  e.  A  ( y  <_  z  ->  ( abs `  (
( x  e.  A  |->  ( B  ^ c  C ) ) `  z ) )  <_ 
( ( if ( 0  <_  m ,  m ,  0 )  ^ c  ( Re
`  C ) )  x.  ( exp `  (
( abs `  C
)  x.  pi ) ) ) )  -> 
( x  e.  A  |->  ( B  ^ c  C ) )  e.  O ( 1 ) ) )
8970, 74, 75, 86, 88syl22anc 1188 . . . 4  |-  ( (
ph  /\  ( y  e.  RR  /\  m  e.  RR ) )  -> 
( A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( ( x  e.  A  |->  ( B  ^ c  C ) ) `  z ) )  <_ 
( ( if ( 0  <_  m ,  m ,  0 )  ^ c  ( Re
`  C ) )  x.  ( exp `  (
( abs `  C
)  x.  pi ) ) ) )  -> 
( x  e.  A  |->  ( B  ^ c  C ) )  e.  O ( 1 ) ) )
9065, 89syld 42 . . 3  |-  ( (
ph  /\  ( y  e.  RR  /\  m  e.  RR ) )  -> 
( A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( ( x  e.  A  |->  B ) `  z ) )  <_  m )  ->  (
x  e.  A  |->  ( B  ^ c  C
) )  e.  O
( 1 ) ) )
9190rexlimdvva 2647 . 2  |-  ( ph  ->  ( E. y  e.  RR  E. m  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( ( x  e.  A  |->  B ) `  z ) )  <_  m )  ->  (
x  e.  A  |->  ( B  ^ c  C
) )  e.  O
( 1 ) ) )
9211, 91mpd 16 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  ^ c  C ) )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2516   E.wrex 2517   _Vcvv 2757    C_ wss 3113   ifcif 3525   class class class wbr 3983    e. cmpt 4037   dom cdm 4647   -->wf 4655   ` cfv 4659  (class class class)co 5778   CCcc 8689   RRcr 8690   0cc0 8691    x. cmul 8696    <_ cle 8822   Recre 11533   abscabs 11670   O (
1 )co1 11911   expce 12291   picpi 12296    ^ c ccxp 19861
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-inf2 7296  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768  ax-pre-sup 8769  ax-addf 8770  ax-mulf 8771
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-iin 3868  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-se 4311  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-isom 4676  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-of 5998  df-1st 6042  df-2nd 6043  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-1o 6433  df-2o 6434  df-oadd 6437  df-er 6614  df-map 6728  df-pm 6729  df-ixp 6772  df-en 6818  df-dom 6819  df-sdom 6820  df-fin 6821  df-fi 7119  df-sup 7148  df-oi 7179  df-card 7526  df-cda 7748  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-div 9378  df-n 9701  df-2 9758  df-3 9759  df-4 9760  df-5 9761  df-6 9762  df-7 9763  df-8 9764  df-9 9765  df-10 9766  df-n0 9919  df-z 9978  df-dec 10078  df-uz 10184  df-q 10270  df-rp 10308  df-xneg 10405  df-xadd 10406  df-xmul 10407  df-ioo 10612  df-ioc 10613  df-ico 10614  df-icc 10615  df-fz 10735  df-fzo 10823  df-fl 10877  df-mod 10926  df-seq 10999  df-exp 11057  df-fac 11241  df-bc 11268  df-hash 11290  df-shft 11513  df-cj 11535  df-re 11536  df-im 11537  df-sqr 11671  df-abs 11672  df-limsup 11896  df-clim 11913  df-rlim 11914  df-o1 11915  df-sum 12110  df-ef 12297  df-sin 12299  df-cos 12300  df-pi 12302  df-struct 13098  df-ndx 13099  df-slot 13100  df-base 13101  df-sets 13102  df-ress 13103  df-plusg 13169  df-mulr 13170  df-starv 13171  df-sca 13172  df-vsca 13173  df-tset 13175  df-ple 13176  df-ds 13178  df-hom 13180  df-cco 13181  df-rest 13275  df-topn 13276  df-topgen 13292  df-pt 13293  df-prds 13296  df-xrs 13351  df-0g 13352  df-gsum 13353  df-qtop 13358  df-imas 13359  df-xps 13361  df-mre 13436  df-mrc 13437  df-acs 13439  df-mnd 14315  df-submnd 14364  df-mulg 14440  df-cntz 14741  df-cmn 15039  df-xmet 16321  df-met 16322  df-bl 16323  df-mopn 16324  df-cnfld 16326  df-top 16584  df-bases 16586  df-topon 16587  df-topsp 16588  df-cld 16704  df-ntr 16705  df-cls 16706  df-nei 16783  df-lp 16816  df-perf 16817  df-cn 16905  df-cnp 16906  df-haus 16991  df-tx 17205  df-hmeo 17394  df-fbas 17468  df-fg 17469  df-fil 17489  df-fm 17581  df-flim 17582  df-flf 17583  df-xms 17833  df-ms 17834  df-tms 17835  df-cncf 18330  df-limc 19164  df-dv 19165  df-log 19862  df-cxp 19863
  Copyright terms: Public domain W3C validator