MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1mul2 Unicode version

Theorem o1mul2 12305
Description: The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
o1add2.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
o1add2.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  O
( 1 ) )
o1add2.4  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  O
( 1 ) )
Assertion
Ref Expression
o1mul2  |-  ( ph  ->  ( x  e.  A  |->  ( B  x.  C
) )  e.  O
( 1 ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem o1mul2
StepHypRef Expression
1 o1add2.1 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
21ralrimiva 2711 . . . . . 6  |-  ( ph  ->  A. x  e.  A  B  e.  V )
3 dmmptg 5273 . . . . . 6  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
42, 3syl 15 . . . . 5  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
5 o1add2.3 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  O
( 1 ) )
6 o1dm 12211 . . . . . 6  |-  ( ( x  e.  A  |->  B )  e.  O ( 1 )  ->  dom  ( x  e.  A  |->  B )  C_  RR )
75, 6syl 15 . . . . 5  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  C_  RR )
84, 7eqsstr3d 3299 . . . 4  |-  ( ph  ->  A  C_  RR )
9 reex 8975 . . . . 5  |-  RR  e.  _V
109ssex 4260 . . . 4  |-  ( A 
C_  RR  ->  A  e. 
_V )
118, 10syl 15 . . 3  |-  ( ph  ->  A  e.  _V )
12 o1add2.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
13 eqidd 2367 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B ) )
14 eqidd 2367 . . 3  |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C ) )
1511, 1, 12, 13, 14offval2 6222 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  o F  x.  ( x  e.  A  |->  C ) )  =  ( x  e.  A  |->  ( B  x.  C ) ) )
16 o1add2.4 . . 3  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  O
( 1 ) )
17 o1mul 12295 . . 3  |-  ( ( ( x  e.  A  |->  B )  e.  O
( 1 )  /\  ( x  e.  A  |->  C )  e.  O
( 1 ) )  ->  ( ( x  e.  A  |->  B )  o F  x.  (
x  e.  A  |->  C ) )  e.  O
( 1 ) )
185, 16, 17syl2anc 642 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  o F  x.  ( x  e.  A  |->  C ) )  e.  O ( 1 ) )
1915, 18eqeltrrd 2441 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  x.  C
) )  e.  O
( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1647    e. wcel 1715   A.wral 2628   _Vcvv 2873    C_ wss 3238    e. cmpt 4179   dom cdm 4792  (class class class)co 5981    o Fcof 6203   RRcr 8883    x. cmul 8889   O (
1 )co1 12167
This theorem is referenced by:  dchrvmasumlem2  20870  dchrvmasumiflem2  20874  dchrisum0fno1  20883  rpvmasum2  20884  dchrisum0lem1  20888  dchrisum0lem2a  20889  dchrisum0lem2  20890  dchrmusumlem  20894  rplogsum  20899  dirith2  20900  mulogsumlem  20903  mulog2sumlem2  20907  mulog2sumlem3  20908  vmalogdivsum2  20910  2vmadivsumlem  20912  selberglem1  20917  selberg3lem1  20929  selberg4lem1  20932  selberg4  20933  selberg3r  20941  selberg4r  20942  selberg34r  20943  pntrlog2bndlem2  20950  pntrlog2bndlem3  20951  pntrlog2bndlem4  20952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-of 6205  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-er 6802  df-pm 6918  df-en 7007  df-dom 7008  df-sdom 7009  df-sup 7341  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-n0 10115  df-z 10176  df-uz 10382  df-rp 10506  df-ico 10815  df-seq 11211  df-exp 11270  df-cj 11791  df-re 11792  df-im 11793  df-sqr 11927  df-abs 11928  df-o1 12171
  Copyright terms: Public domain W3C validator