MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1of2 Unicode version

Theorem o1of2 12051
Description: Show that a binary operation preserves eventual boundedness. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
o1of2.1  |-  ( ( m  e.  RR  /\  n  e.  RR )  ->  M  e.  RR )
o1of2.2  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x R y )  e.  CC )
o1of2.3  |-  ( ( ( m  e.  RR  /\  n  e.  RR )  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( ( ( abs `  x )  <_  m  /\  ( abs `  y
)  <_  n )  ->  ( abs `  (
x R y ) )  <_  M )
)
Assertion
Ref Expression
o1of2  |-  ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  ->  ( F  o F R G )  e.  O ( 1 ) )
Distinct variable groups:    m, n, x, y, F    m, G, n, x, y    R, m, n, x, y    x, M, y
Allowed substitution hints:    M( m, n)

Proof of Theorem o1of2
StepHypRef Expression
1 o1f 11968 . . . 4  |-  ( F  e.  O ( 1 )  ->  F : dom  F --> CC )
2 o1bdd 11970 . . . 4  |-  ( ( F  e.  O ( 1 )  /\  F : dom  F --> CC )  ->  E. a  e.  RR  E. m  e.  RR  A. z  e.  dom  F ( a  <_  z  ->  ( abs `  ( F `
 z ) )  <_  m ) )
31, 2mpdan 652 . . 3  |-  ( F  e.  O ( 1 )  ->  E. a  e.  RR  E. m  e.  RR  A. z  e. 
dom  F ( a  <_  z  ->  ( abs `  ( F `  z ) )  <_  m ) )
43adantr 453 . 2  |-  ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  ->  E. a  e.  RR  E. m  e.  RR  A. z  e. 
dom  F ( a  <_  z  ->  ( abs `  ( F `  z ) )  <_  m ) )
5 o1f 11968 . . . 4  |-  ( G  e.  O ( 1 )  ->  G : dom  G --> CC )
6 o1bdd 11970 . . . 4  |-  ( ( G  e.  O ( 1 )  /\  G : dom  G --> CC )  ->  E. b  e.  RR  E. n  e.  RR  A. z  e.  dom  G ( b  <_  z  ->  ( abs `  ( G `
 z ) )  <_  n ) )
75, 6mpdan 652 . . 3  |-  ( G  e.  O ( 1 )  ->  E. b  e.  RR  E. n  e.  RR  A. z  e. 
dom  G ( b  <_  z  ->  ( abs `  ( G `  z ) )  <_  n ) )
87adantl 454 . 2  |-  ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  ->  E. b  e.  RR  E. n  e.  RR  A. z  e. 
dom  G ( b  <_  z  ->  ( abs `  ( G `  z ) )  <_  n ) )
9 reeanv 2682 . . 3  |-  ( E. a  e.  RR  E. b  e.  RR  ( E. m  e.  RR  A. z  e.  dom  F
( a  <_  z  ->  ( abs `  ( F `  z )
)  <_  m )  /\  E. n  e.  RR  A. z  e.  dom  G
( b  <_  z  ->  ( abs `  ( G `  z )
)  <_  n )
)  <->  ( E. a  e.  RR  E. m  e.  RR  A. z  e. 
dom  F ( a  <_  z  ->  ( abs `  ( F `  z ) )  <_  m )  /\  E. b  e.  RR  E. n  e.  RR  A. z  e. 
dom  G ( b  <_  z  ->  ( abs `  ( G `  z ) )  <_  n ) ) )
10 reeanv 2682 . . . . 5  |-  ( E. m  e.  RR  E. n  e.  RR  ( A. z  e.  dom  F ( a  <_  z  ->  ( abs `  ( F `  z )
)  <_  m )  /\  A. z  e.  dom  G ( b  <_  z  ->  ( abs `  ( G `  z )
)  <_  n )
)  <->  ( E. m  e.  RR  A. z  e. 
dom  F ( a  <_  z  ->  ( abs `  ( F `  z ) )  <_  m )  /\  E. n  e.  RR  A. z  e.  dom  G ( b  <_  z  ->  ( abs `  ( G `  z ) )  <_  n ) ) )
11 inss1 3364 . . . . . . . . . 10  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  F
12 ssralv 3212 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  C_  dom  F  -> 
( A. z  e. 
dom  F ( a  <_  z  ->  ( abs `  ( F `  z ) )  <_  m )  ->  A. z  e.  ( dom  F  i^i  dom 
G ) ( a  <_  z  ->  ( abs `  ( F `  z ) )  <_  m ) ) )
1311, 12ax-mp 10 . . . . . . . . 9  |-  ( A. z  e.  dom  F ( a  <_  z  ->  ( abs `  ( F `
 z ) )  <_  m )  ->  A. z  e.  ( dom  F  i^i  dom  G
) ( a  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  m
) )
14 inss2 3365 . . . . . . . . . 10  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  G
15 ssralv 3212 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  C_  dom  G  -> 
( A. z  e. 
dom  G ( b  <_  z  ->  ( abs `  ( G `  z ) )  <_  n )  ->  A. z  e.  ( dom  F  i^i  dom 
G ) ( b  <_  z  ->  ( abs `  ( G `  z ) )  <_  n ) ) )
1614, 15ax-mp 10 . . . . . . . . 9  |-  ( A. z  e.  dom  G ( b  <_  z  ->  ( abs `  ( G `
 z ) )  <_  n )  ->  A. z  e.  ( dom  F  i^i  dom  G
) ( b  <_ 
z  ->  ( abs `  ( G `  z
) )  <_  n
) )
1713, 16anim12i 551 . . . . . . . 8  |-  ( ( A. z  e.  dom  F ( a  <_  z  ->  ( abs `  ( F `  z )
)  <_  m )  /\  A. z  e.  dom  G ( b  <_  z  ->  ( abs `  ( G `  z )
)  <_  n )
)  ->  ( A. z  e.  ( dom  F  i^i  dom  G )
( a  <_  z  ->  ( abs `  ( F `  z )
)  <_  m )  /\  A. z  e.  ( dom  F  i^i  dom  G ) ( b  <_ 
z  ->  ( abs `  ( G `  z
) )  <_  n
) ) )
18 r19.26 2650 . . . . . . . 8  |-  ( A. z  e.  ( dom  F  i^i  dom  G )
( ( a  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  m
)  /\  ( b  <_  z  ->  ( abs `  ( G `  z
) )  <_  n
) )  <->  ( A. z  e.  ( dom  F  i^i  dom  G )
( a  <_  z  ->  ( abs `  ( F `  z )
)  <_  m )  /\  A. z  e.  ( dom  F  i^i  dom  G ) ( b  <_ 
z  ->  ( abs `  ( G `  z
) )  <_  n
) ) )
1917, 18sylibr 205 . . . . . . 7  |-  ( ( A. z  e.  dom  F ( a  <_  z  ->  ( abs `  ( F `  z )
)  <_  m )  /\  A. z  e.  dom  G ( b  <_  z  ->  ( abs `  ( G `  z )
)  <_  n )
)  ->  A. z  e.  ( dom  F  i^i  dom 
G ) ( ( a  <_  z  ->  ( abs `  ( F `
 z ) )  <_  m )  /\  ( b  <_  z  ->  ( abs `  ( G `  z )
)  <_  n )
) )
20 prth 557 . . . . . . . . . 10  |-  ( ( ( a  <_  z  ->  ( abs `  ( F `  z )
)  <_  m )  /\  ( b  <_  z  ->  ( abs `  ( G `  z )
)  <_  n )
)  ->  ( (
a  <_  z  /\  b  <_  z )  -> 
( ( abs `  ( F `  z )
)  <_  m  /\  ( abs `  ( G `
 z ) )  <_  n ) ) )
21 simplrl 739 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O
( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  a  e.  RR )
2221adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  /\  z  e.  ( dom  F  i^i  dom 
G ) )  -> 
a  e.  RR )
23 simplrr 740 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O
( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  b  e.  RR )
2423adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  /\  z  e.  ( dom  F  i^i  dom 
G ) )  -> 
b  e.  RR )
25 o1dm 11969 . . . . . . . . . . . . . . . 16  |-  ( F  e.  O ( 1 )  ->  dom  F  C_  RR )
2625ad3antrrr 713 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O
( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  dom  F  C_  RR )
2711, 26syl5ss 3165 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O
( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  ( dom  F  i^i  dom  G )  C_  RR )
2827sselda 3155 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  /\  z  e.  ( dom  F  i^i  dom 
G ) )  -> 
z  e.  RR )
29 maxle 10485 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  z  e.  RR )  ->  ( if ( a  <_  b ,  b ,  a )  <_  z  <->  ( a  <_  z  /\  b  <_ 
z ) ) )
3022, 24, 28, 29syl3anc 1187 . . . . . . . . . . . 12  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  /\  z  e.  ( dom  F  i^i  dom 
G ) )  -> 
( if ( a  <_  b ,  b ,  a )  <_ 
z  <->  ( a  <_ 
z  /\  b  <_  z ) ) )
3130biimpd 200 . . . . . . . . . . 11  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  /\  z  e.  ( dom  F  i^i  dom 
G ) )  -> 
( if ( a  <_  b ,  b ,  a )  <_ 
z  ->  ( a  <_  z  /\  b  <_ 
z ) ) )
321ad3antrrr 713 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O
( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  F : dom  F --> CC )
3311sseli 3151 . . . . . . . . . . . . . 14  |-  ( z  e.  ( dom  F  i^i  dom  G )  -> 
z  e.  dom  F
)
34 ffvelrn 5597 . . . . . . . . . . . . . 14  |-  ( ( F : dom  F --> CC  /\  z  e.  dom  F )  ->  ( F `  z )  e.  CC )
3532, 33, 34syl2an 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  /\  z  e.  ( dom  F  i^i  dom 
G ) )  -> 
( F `  z
)  e.  CC )
36 simpllr 738 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O
( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  G  e.  O ( 1 ) )
3736, 5syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O
( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  G : dom  G --> CC )
3814sseli 3151 . . . . . . . . . . . . . 14  |-  ( z  e.  ( dom  F  i^i  dom  G )  -> 
z  e.  dom  G
)
39 ffvelrn 5597 . . . . . . . . . . . . . 14  |-  ( ( G : dom  G --> CC  /\  z  e.  dom  G )  ->  ( G `  z )  e.  CC )
4037, 38, 39syl2an 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  /\  z  e.  ( dom  F  i^i  dom 
G ) )  -> 
( G `  z
)  e.  CC )
41 o1of2.3 . . . . . . . . . . . . . . 15  |-  ( ( ( m  e.  RR  /\  n  e.  RR )  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( ( ( abs `  x )  <_  m  /\  ( abs `  y
)  <_  n )  ->  ( abs `  (
x R y ) )  <_  M )
)
4241ralrimivva 2610 . . . . . . . . . . . . . 14  |-  ( ( m  e.  RR  /\  n  e.  RR )  ->  A. x  e.  CC  A. y  e.  CC  (
( ( abs `  x
)  <_  m  /\  ( abs `  y )  <_  n )  -> 
( abs `  (
x R y ) )  <_  M )
)
4342ad2antlr 710 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  /\  z  e.  ( dom  F  i^i  dom 
G ) )  ->  A. x  e.  CC  A. y  e.  CC  (
( ( abs `  x
)  <_  m  /\  ( abs `  y )  <_  n )  -> 
( abs `  (
x R y ) )  <_  M )
)
44 fveq2 5458 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( F `  z )  ->  ( abs `  x )  =  ( abs `  ( F `  z )
) )
4544breq1d 4007 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( F `  z )  ->  (
( abs `  x
)  <_  m  <->  ( abs `  ( F `  z
) )  <_  m
) )
4645anbi1d 688 . . . . . . . . . . . . . . 15  |-  ( x  =  ( F `  z )  ->  (
( ( abs `  x
)  <_  m  /\  ( abs `  y )  <_  n )  <->  ( ( abs `  ( F `  z ) )  <_  m  /\  ( abs `  y
)  <_  n )
) )
47 oveq1 5799 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( F `  z )  ->  (
x R y )  =  ( ( F `
 z ) R y ) )
4847fveq2d 5462 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( F `  z )  ->  ( abs `  ( x R y ) )  =  ( abs `  (
( F `  z
) R y ) ) )
4948breq1d 4007 . . . . . . . . . . . . . . 15  |-  ( x  =  ( F `  z )  ->  (
( abs `  (
x R y ) )  <_  M  <->  ( abs `  ( ( F `  z ) R y ) )  <_  M
) )
5046, 49imbi12d 313 . . . . . . . . . . . . . 14  |-  ( x  =  ( F `  z )  ->  (
( ( ( abs `  x )  <_  m  /\  ( abs `  y
)  <_  n )  ->  ( abs `  (
x R y ) )  <_  M )  <->  ( ( ( abs `  ( F `  z )
)  <_  m  /\  ( abs `  y )  <_  n )  -> 
( abs `  (
( F `  z
) R y ) )  <_  M )
) )
51 fveq2 5458 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( G `  z )  ->  ( abs `  y )  =  ( abs `  ( G `  z )
) )
5251breq1d 4007 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( G `  z )  ->  (
( abs `  y
)  <_  n  <->  ( abs `  ( G `  z
) )  <_  n
) )
5352anbi2d 687 . . . . . . . . . . . . . . 15  |-  ( y  =  ( G `  z )  ->  (
( ( abs `  ( F `  z )
)  <_  m  /\  ( abs `  y )  <_  n )  <->  ( ( abs `  ( F `  z ) )  <_  m  /\  ( abs `  ( G `  z )
)  <_  n )
) )
54 oveq2 5800 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( G `  z )  ->  (
( F `  z
) R y )  =  ( ( F `
 z ) R ( G `  z
) ) )
5554fveq2d 5462 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( G `  z )  ->  ( abs `  ( ( F `
 z ) R y ) )  =  ( abs `  (
( F `  z
) R ( G `
 z ) ) ) )
5655breq1d 4007 . . . . . . . . . . . . . . 15  |-  ( y  =  ( G `  z )  ->  (
( abs `  (
( F `  z
) R y ) )  <_  M  <->  ( abs `  ( ( F `  z ) R ( G `  z ) ) )  <_  M
) )
5753, 56imbi12d 313 . . . . . . . . . . . . . 14  |-  ( y  =  ( G `  z )  ->  (
( ( ( abs `  ( F `  z
) )  <_  m  /\  ( abs `  y
)  <_  n )  ->  ( abs `  (
( F `  z
) R y ) )  <_  M )  <->  ( ( ( abs `  ( F `  z )
)  <_  m  /\  ( abs `  ( G `
 z ) )  <_  n )  -> 
( abs `  (
( F `  z
) R ( G `
 z ) ) )  <_  M )
) )
5850, 57rcla42va 2866 . . . . . . . . . . . . 13  |-  ( ( ( ( F `  z )  e.  CC  /\  ( G `  z
)  e.  CC )  /\  A. x  e.  CC  A. y  e.  CC  ( ( ( abs `  x )  <_  m  /\  ( abs `  y )  <_  n )  ->  ( abs `  ( x R y ) )  <_  M ) )  -> 
( ( ( abs `  ( F `  z
) )  <_  m  /\  ( abs `  ( G `  z )
)  <_  n )  ->  ( abs `  (
( F `  z
) R ( G `
 z ) ) )  <_  M )
)
5935, 40, 43, 58syl21anc 1186 . . . . . . . . . . . 12  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  /\  z  e.  ( dom  F  i^i  dom 
G ) )  -> 
( ( ( abs `  ( F `  z
) )  <_  m  /\  ( abs `  ( G `  z )
)  <_  n )  ->  ( abs `  (
( F `  z
) R ( G `
 z ) ) )  <_  M )
)
60 ffn 5327 . . . . . . . . . . . . . . . 16  |-  ( F : dom  F --> CC  ->  F  Fn  dom  F )
6132, 60syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O
( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  F  Fn  dom  F )
62 ffn 5327 . . . . . . . . . . . . . . . 16  |-  ( G : dom  G --> CC  ->  G  Fn  dom  G )
6337, 62syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O
( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  G  Fn  dom  G )
64 reex 8796 . . . . . . . . . . . . . . . 16  |-  RR  e.  _V
65 ssexg 4134 . . . . . . . . . . . . . . . 16  |-  ( ( dom  F  C_  RR  /\  RR  e.  _V )  ->  dom  F  e.  _V )
6626, 64, 65sylancl 646 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O
( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  dom  F  e. 
_V )
67 dmexg 4927 . . . . . . . . . . . . . . . 16  |-  ( G  e.  O ( 1 )  ->  dom  G  e. 
_V )
6836, 67syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O
( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  dom  G  e. 
_V )
69 eqid 2258 . . . . . . . . . . . . . . 15  |-  ( dom 
F  i^i  dom  G )  =  ( dom  F  i^i  dom  G )
70 eqidd 2259 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  /\  z  e. 
dom  F )  -> 
( F `  z
)  =  ( F `
 z ) )
71 eqidd 2259 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  /\  z  e. 
dom  G )  -> 
( G `  z
)  =  ( G `
 z ) )
7261, 63, 66, 68, 69, 70, 71ofval 6021 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  /\  z  e.  ( dom  F  i^i  dom 
G ) )  -> 
( ( F  o F R G ) `  z )  =  ( ( F `  z
) R ( G `
 z ) ) )
7372fveq2d 5462 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  /\  z  e.  ( dom  F  i^i  dom 
G ) )  -> 
( abs `  (
( F  o F R G ) `  z ) )  =  ( abs `  (
( F `  z
) R ( G `
 z ) ) ) )
7473breq1d 4007 . . . . . . . . . . . 12  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  /\  z  e.  ( dom  F  i^i  dom 
G ) )  -> 
( ( abs `  (
( F  o F R G ) `  z ) )  <_  M 
<->  ( abs `  (
( F `  z
) R ( G `
 z ) ) )  <_  M )
)
7559, 74sylibrd 227 . . . . . . . . . . 11  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  /\  z  e.  ( dom  F  i^i  dom 
G ) )  -> 
( ( ( abs `  ( F `  z
) )  <_  m  /\  ( abs `  ( G `  z )
)  <_  n )  ->  ( abs `  (
( F  o F R G ) `  z ) )  <_  M ) )
7631, 75imim12d 70 . . . . . . . . . 10  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  /\  z  e.  ( dom  F  i^i  dom 
G ) )  -> 
( ( ( a  <_  z  /\  b  <_  z )  ->  (
( abs `  ( F `  z )
)  <_  m  /\  ( abs `  ( G `
 z ) )  <_  n ) )  ->  ( if ( a  <_  b , 
b ,  a )  <_  z  ->  ( abs `  ( ( F  o F R G ) `  z ) )  <_  M )
) )
7720, 76syl5 30 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  /\  z  e.  ( dom  F  i^i  dom 
G ) )  -> 
( ( ( a  <_  z  ->  ( abs `  ( F `  z ) )  <_  m )  /\  (
b  <_  z  ->  ( abs `  ( G `
 z ) )  <_  n ) )  ->  ( if ( a  <_  b , 
b ,  a )  <_  z  ->  ( abs `  ( ( F  o F R G ) `  z ) )  <_  M )
) )
7877ralimdva 2596 . . . . . . . 8  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O
( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  ( A. z  e.  ( dom  F  i^i  dom  G )
( ( a  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  m
)  /\  ( b  <_  z  ->  ( abs `  ( G `  z
) )  <_  n
) )  ->  A. z  e.  ( dom  F  i^i  dom 
G ) ( if ( a  <_  b ,  b ,  a )  <_  z  ->  ( abs `  ( ( F  o F R G ) `  z
) )  <_  M
) ) )
79 o1of2.2 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x R y )  e.  CC )
8079adantl 454 . . . . . . . . . 10  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x R y )  e.  CC )
8180, 32, 37, 66, 68, 69off 6027 . . . . . . . . 9  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O
( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  ( F  o F R G ) : ( dom  F  i^i  dom  G ) --> CC )
82 ifcl 3575 . . . . . . . . . 10  |-  ( ( b  e.  RR  /\  a  e.  RR )  ->  if ( a  <_ 
b ,  b ,  a )  e.  RR )
8323, 21, 82syl2anc 645 . . . . . . . . 9  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O
( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  if (
a  <_  b , 
b ,  a )  e.  RR )
84 o1of2.1 . . . . . . . . . 10  |-  ( ( m  e.  RR  /\  n  e.  RR )  ->  M  e.  RR )
8584adantl 454 . . . . . . . . 9  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O
( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  M  e.  RR )
86 elo12r 11967 . . . . . . . . . 10  |-  ( ( ( ( F  o F R G ) : ( dom  F  i^i  dom 
G ) --> CC  /\  ( dom  F  i^i  dom  G )  C_  RR )  /\  ( if ( a  <_  b ,  b ,  a )  e.  RR  /\  M  e.  RR )  /\  A. z  e.  ( dom  F  i^i  dom  G )
( if ( a  <_  b ,  b ,  a )  <_ 
z  ->  ( abs `  ( ( F  o F R G ) `  z ) )  <_  M ) )  -> 
( F  o F R G )  e.  O ( 1 ) )
87863expia 1158 . . . . . . . . 9  |-  ( ( ( ( F  o F R G ) : ( dom  F  i^i  dom 
G ) --> CC  /\  ( dom  F  i^i  dom  G )  C_  RR )  /\  ( if ( a  <_  b ,  b ,  a )  e.  RR  /\  M  e.  RR ) )  -> 
( A. z  e.  ( dom  F  i^i  dom 
G ) ( if ( a  <_  b ,  b ,  a )  <_  z  ->  ( abs `  ( ( F  o F R G ) `  z
) )  <_  M
)  ->  ( F  o F R G )  e.  O ( 1 ) ) )
8881, 27, 83, 85, 87syl22anc 1188 . . . . . . . 8  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O
( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  ( A. z  e.  ( dom  F  i^i  dom  G )
( if ( a  <_  b ,  b ,  a )  <_ 
z  ->  ( abs `  ( ( F  o F R G ) `  z ) )  <_  M )  ->  ( F  o F R G )  e.  O ( 1 ) ) )
8978, 88syld 42 . . . . . . 7  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O
( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  ( A. z  e.  ( dom  F  i^i  dom  G )
( ( a  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  m
)  /\  ( b  <_  z  ->  ( abs `  ( G `  z
) )  <_  n
) )  ->  ( F  o F R G )  e.  O ( 1 ) ) )
9019, 89syl5 30 . . . . . 6  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  e.  O
( 1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  ( ( A. z  e.  dom  F ( a  <_  z  ->  ( abs `  ( F `  z )
)  <_  m )  /\  A. z  e.  dom  G ( b  <_  z  ->  ( abs `  ( G `  z )
)  <_  n )
)  ->  ( F  o F R G )  e.  O ( 1 ) ) )
9190rexlimdvva 2649 . . . . 5  |-  ( ( ( F  e.  O
( 1 )  /\  G  e.  O (
1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  ->  ( E. m  e.  RR  E. n  e.  RR  ( A. z  e.  dom  F ( a  <_  z  ->  ( abs `  ( F `  z ) )  <_  m )  /\  A. z  e.  dom  G ( b  <_  z  ->  ( abs `  ( G `
 z ) )  <_  n ) )  ->  ( F  o F R G )  e.  O ( 1 ) ) )
9210, 91syl5bir 211 . . . 4  |-  ( ( ( F  e.  O
( 1 )  /\  G  e.  O (
1 ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  ->  ( ( E. m  e.  RR  A. z  e.  dom  F
( a  <_  z  ->  ( abs `  ( F `  z )
)  <_  m )  /\  E. n  e.  RR  A. z  e.  dom  G
( b  <_  z  ->  ( abs `  ( G `  z )
)  <_  n )
)  ->  ( F  o F R G )  e.  O ( 1 ) ) )
9392rexlimdvva 2649 . . 3  |-  ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  ->  ( E. a  e.  RR  E. b  e.  RR  ( E. m  e.  RR  A. z  e. 
dom  F ( a  <_  z  ->  ( abs `  ( F `  z ) )  <_  m )  /\  E. n  e.  RR  A. z  e.  dom  G ( b  <_  z  ->  ( abs `  ( G `  z ) )  <_  n ) )  -> 
( F  o F R G )  e.  O ( 1 ) ) )
949, 93syl5bir 211 . 2  |-  ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  ->  ( ( E. a  e.  RR  E. m  e.  RR  A. z  e.  dom  F ( a  <_  z  ->  ( abs `  ( F `
 z ) )  <_  m )  /\  E. b  e.  RR  E. n  e.  RR  A. z  e.  dom  G ( b  <_  z  ->  ( abs `  ( G `  z ) )  <_  n ) )  -> 
( F  o F R G )  e.  O ( 1 ) ) )
954, 8, 94mp2and 663 1  |-  ( ( F  e.  O ( 1 )  /\  G  e.  O ( 1 ) )  ->  ( F  o F R G )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2518   E.wrex 2519   _Vcvv 2763    i^i cin 3126    C_ wss 3127   ifcif 3539   class class class wbr 3997   dom cdm 4661    Fn wfn 4668   -->wf 4669   ` cfv 4673  (class class class)co 5792    o Fcof 6010   CCcc 8703   RRcr 8704    <_ cle 8836   abscabs 11684   O (
1 )co1 11925
This theorem is referenced by:  o1add  12052  o1mul  12053  o1sub  12054
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-pre-lttri 8779  ax-pre-lttrn 8780
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-po 4286  df-so 4287  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-er 6628  df-pm 6743  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-ico 10628  df-o1 11929
  Copyright terms: Public domain W3C validator