MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1res Unicode version

Theorem o1res 12282
Description: The restriction of an eventually bounded function is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
o1res  |-  ( F  e.  O ( 1 )  ->  ( F  |`  A )  e.  O
( 1 ) )

Proof of Theorem o1res
StepHypRef Expression
1 resco 5315 . . 3  |-  ( ( abs  o.  F )  |`  A )  =  ( abs  o.  ( F  |`  A ) )
2 o1f 12251 . . . . . 6  |-  ( F  e.  O ( 1 )  ->  F : dom  F --> CC )
3 lo1o1 12254 . . . . . 6  |-  ( F : dom  F --> CC  ->  ( F  e.  O ( 1 )  <->  ( abs  o.  F )  e.  <_ O ( 1 ) ) )
42, 3syl 16 . . . . 5  |-  ( F  e.  O ( 1 )  ->  ( F  e.  O ( 1 )  <-> 
( abs  o.  F
)  e.  <_ O
( 1 ) ) )
54ibi 233 . . . 4  |-  ( F  e.  O ( 1 )  ->  ( abs  o.  F )  e.  <_ O ( 1 ) )
6 lo1res 12281 . . . 4  |-  ( ( abs  o.  F )  e.  <_ O ( 1 )  ->  ( ( abs  o.  F )  |`  A )  e.  <_ O ( 1 ) )
75, 6syl 16 . . 3  |-  ( F  e.  O ( 1 )  ->  ( ( abs  o.  F )  |`  A )  e.  <_ O ( 1 ) )
81, 7syl5eqelr 2473 . 2  |-  ( F  e.  O ( 1 )  ->  ( abs  o.  ( F  |`  A ) )  e.  <_ O
( 1 ) )
9 fresin 5553 . . 3  |-  ( F : dom  F --> CC  ->  ( F  |`  A ) : ( dom  F  i^i  A ) --> CC )
10 lo1o1 12254 . . 3  |-  ( ( F  |`  A ) : ( dom  F  i^i  A ) --> CC  ->  ( ( F  |`  A )  e.  O ( 1 )  <->  ( abs  o.  ( F  |`  A ) )  e.  <_ O
( 1 ) ) )
112, 9, 103syl 19 . 2  |-  ( F  e.  O ( 1 )  ->  ( ( F  |`  A )  e.  O ( 1 )  <-> 
( abs  o.  ( F  |`  A ) )  e.  <_ O ( 1 ) ) )
128, 11mpbird 224 1  |-  ( F  e.  O ( 1 )  ->  ( F  |`  A )  e.  O
( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    e. wcel 1717    i^i cin 3263   dom cdm 4819    |` cres 4821    o. ccom 4823   -->wf 5391   CCcc 8922   abscabs 11967   O ( 1 )co1 12208   <_ O ( 1 )clo1 12209
This theorem is referenced by:  o1res2  12285  o1resb  12288
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-er 6842  df-pm 6958  df-en 7047  df-dom 7048  df-sdom 7049  df-sup 7382  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-n0 10155  df-z 10216  df-uz 10422  df-rp 10546  df-ico 10855  df-seq 11252  df-exp 11311  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-o1 12212  df-lo1 12213
  Copyright terms: Public domain W3C validator