MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1rlimmul Unicode version

Theorem o1rlimmul 12339
Description: The product of an eventually bounded function and a function of limit zero has limit zero. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
o1rlimmul  |-  ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  -> 
( F  o F  x.  G )  ~~> r  0 )

Proof of Theorem o1rlimmul
Dummy variables  x  y  z  a  b  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1f 12250 . . . . 5  |-  ( F  e.  O ( 1 )  ->  F : dom  F --> CC )
21adantr 452 . . . 4  |-  ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  ->  F : dom  F --> CC )
3 ffn 5531 . . . 4  |-  ( F : dom  F --> CC  ->  F  Fn  dom  F )
42, 3syl 16 . . 3  |-  ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  ->  F  Fn  dom  F )
5 rlimf 12222 . . . . 5  |-  ( G  ~~> r  0  ->  G : dom  G --> CC )
65adantl 453 . . . 4  |-  ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  ->  G : dom  G --> CC )
7 ffn 5531 . . . 4  |-  ( G : dom  G --> CC  ->  G  Fn  dom  G )
86, 7syl 16 . . 3  |-  ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  ->  G  Fn  dom  G )
9 o1dm 12251 . . . . 5  |-  ( F  e.  O ( 1 )  ->  dom  F  C_  RR )
109adantr 452 . . . 4  |-  ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  ->  dom  F  C_  RR )
11 reex 9014 . . . 4  |-  RR  e.  _V
12 ssexg 4290 . . . 4  |-  ( ( dom  F  C_  RR  /\  RR  e.  _V )  ->  dom  F  e.  _V )
1310, 11, 12sylancl 644 . . 3  |-  ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  ->  dom  F  e.  _V )
14 rlimss 12223 . . . . 5  |-  ( G  ~~> r  0  ->  dom  G 
C_  RR )
1514adantl 453 . . . 4  |-  ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  ->  dom  G  C_  RR )
16 ssexg 4290 . . . 4  |-  ( ( dom  G  C_  RR  /\  RR  e.  _V )  ->  dom  G  e.  _V )
1715, 11, 16sylancl 644 . . 3  |-  ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  ->  dom  G  e.  _V )
18 eqid 2387 . . 3  |-  ( dom 
F  i^i  dom  G )  =  ( dom  F  i^i  dom  G )
19 eqidd 2388 . . 3  |-  ( ( ( F  e.  O
( 1 )  /\  G 
~~> r  0 )  /\  x  e.  dom  F )  ->  ( F `  x )  =  ( F `  x ) )
20 eqidd 2388 . . 3  |-  ( ( ( F  e.  O
( 1 )  /\  G 
~~> r  0 )  /\  x  e.  dom  G )  ->  ( G `  x )  =  ( G `  x ) )
214, 8, 13, 17, 18, 19, 20offval 6251 . 2  |-  ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  -> 
( F  o F  x.  G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x )  x.  ( G `  x
) ) ) )
22 o1bdd 12252 . . . . . . 7  |-  ( ( F  e.  O ( 1 )  /\  F : dom  F --> CC )  ->  E. a  e.  RR  E. m  e.  RR  A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `
 x ) )  <_  m ) )
231, 22mpdan 650 . . . . . 6  |-  ( F  e.  O ( 1 )  ->  E. a  e.  RR  E. m  e.  RR  A. x  e. 
dom  F ( a  <_  x  ->  ( abs `  ( F `  x ) )  <_  m ) )
2423ad2antrr 707 . . . . 5  |-  ( ( ( F  e.  O
( 1 )  /\  G 
~~> r  0 )  /\  y  e.  RR+ )  ->  E. a  e.  RR  E. m  e.  RR  A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `
 x ) )  <_  m ) )
25 fvex 5682 . . . . . . . . . 10  |-  ( G `
 x )  e. 
_V
2625a1i 11 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  x  e.  dom  G )  ->  ( G `  x )  e.  _V )
2726ralrimiva 2732 . . . . . . . 8  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  A. x  e.  dom  G ( G `
 x )  e. 
_V )
28 simplr 732 . . . . . . . . 9  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  y  e.  RR+ )
29 recn 9013 . . . . . . . . . . . 12  |-  ( m  e.  RR  ->  m  e.  CC )
3029ad2antll 710 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  m  e.  CC )
3130abscld 12165 . . . . . . . . . 10  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  ( abs `  m )  e.  RR )
3230absge0d 12173 . . . . . . . . . 10  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  0  <_  ( abs `  m ) )
3331, 32ge0p1rpd 10606 . . . . . . . . 9  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  ( ( abs `  m )  +  1 )  e.  RR+ )
3428, 33rpdivcld 10597 . . . . . . . 8  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  ( y  /  ( ( abs `  m )  +  1 ) )  e.  RR+ )
356feqmptd 5718 . . . . . . . . . 10  |-  ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  ->  G  =  ( x  e.  dom  G  |->  ( G `
 x ) ) )
36 simpr 448 . . . . . . . . . 10  |-  ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  ->  G 
~~> r  0 )
3735, 36eqbrtrrd 4175 . . . . . . . . 9  |-  ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  -> 
( x  e.  dom  G 
|->  ( G `  x
) )  ~~> r  0 )
3837ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  ( x  e.  dom  G  |->  ( G `
 x ) )  ~~> r  0 )
3927, 34, 38rlimi 12234 . . . . . . 7  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  E. b  e.  RR  A. x  e. 
dom  G ( b  <_  x  ->  ( abs `  ( ( G `
 x )  - 
0 ) )  < 
( y  /  (
( abs `  m
)  +  1 ) ) ) )
40 inss1 3504 . . . . . . . . . . . . . 14  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  F
41 ssralv 3350 . . . . . . . . . . . . . 14  |-  ( ( dom  F  i^i  dom  G )  C_  dom  F  -> 
( A. x  e. 
dom  F ( a  <_  x  ->  ( abs `  ( F `  x ) )  <_  m )  ->  A. x  e.  ( dom  F  i^i  dom 
G ) ( a  <_  x  ->  ( abs `  ( F `  x ) )  <_  m ) ) )
4240, 41ax-mp 8 . . . . . . . . . . . . 13  |-  ( A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `
 x ) )  <_  m )  ->  A. x  e.  ( dom  F  i^i  dom  G
) ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )
)
43 inss2 3505 . . . . . . . . . . . . . 14  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  G
44 ssralv 3350 . . . . . . . . . . . . . 14  |-  ( ( dom  F  i^i  dom  G )  C_  dom  G  -> 
( A. x  e. 
dom  G ( b  <_  x  ->  ( abs `  ( ( G `
 x )  - 
0 ) )  < 
( y  /  (
( abs `  m
)  +  1 ) ) )  ->  A. x  e.  ( dom  F  i^i  dom 
G ) ( b  <_  x  ->  ( abs `  ( ( G `
 x )  - 
0 ) )  < 
( y  /  (
( abs `  m
)  +  1 ) ) ) ) )
4543, 44ax-mp 8 . . . . . . . . . . . . 13  |-  ( A. x  e.  dom  G ( b  <_  x  ->  ( abs `  ( ( G `  x )  -  0 ) )  <  ( y  / 
( ( abs `  m
)  +  1 ) ) )  ->  A. x  e.  ( dom  F  i^i  dom 
G ) ( b  <_  x  ->  ( abs `  ( ( G `
 x )  - 
0 ) )  < 
( y  /  (
( abs `  m
)  +  1 ) ) ) )
4642, 45anim12i 550 . . . . . . . . . . . 12  |-  ( ( A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )  /\  A. x  e.  dom  G ( b  <_  x  ->  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )  ->  ( A. x  e.  ( dom  F  i^i  dom 
G ) ( a  <_  x  ->  ( abs `  ( F `  x ) )  <_  m )  /\  A. x  e.  ( dom  F  i^i  dom  G )
( b  <_  x  ->  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) ) )
47 r19.26 2781 . . . . . . . . . . . 12  |-  ( A. x  e.  ( dom  F  i^i  dom  G )
( ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )  /\  ( b  <_  x  ->  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )  <-> 
( A. x  e.  ( dom  F  i^i  dom 
G ) ( a  <_  x  ->  ( abs `  ( F `  x ) )  <_  m )  /\  A. x  e.  ( dom  F  i^i  dom  G )
( b  <_  x  ->  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) ) )
4846, 47sylibr 204 . . . . . . . . . . 11  |-  ( ( A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )  /\  A. x  e.  dom  G ( b  <_  x  ->  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )  ->  A. x  e.  ( dom  F  i^i  dom  G ) ( ( a  <_  x  ->  ( abs `  ( F `  x ) )  <_  m )  /\  (
b  <_  x  ->  ( abs `  ( ( G `  x )  -  0 ) )  <  ( y  / 
( ( abs `  m
)  +  1 ) ) ) ) )
49 prth 555 . . . . . . . . . . . 12  |-  ( ( ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )  /\  ( b  <_  x  ->  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )  ->  ( ( a  <_  x  /\  b  <_  x )  ->  (
( abs `  ( F `  x )
)  <_  m  /\  ( abs `  ( ( G `  x )  -  0 ) )  <  ( y  / 
( ( abs `  m
)  +  1 ) ) ) ) )
5049ralimi 2724 . . . . . . . . . . 11  |-  ( A. x  e.  ( dom  F  i^i  dom  G )
( ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )  /\  ( b  <_  x  ->  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )  ->  A. x  e.  ( dom  F  i^i  dom  G ) ( ( a  <_  x  /\  b  <_  x )  ->  (
( abs `  ( F `  x )
)  <_  m  /\  ( abs `  ( ( G `  x )  -  0 ) )  <  ( y  / 
( ( abs `  m
)  +  1 ) ) ) ) )
5148, 50syl 16 . . . . . . . . . 10  |-  ( ( A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )  /\  A. x  e.  dom  G ( b  <_  x  ->  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )  ->  A. x  e.  ( dom  F  i^i  dom  G ) ( ( a  <_  x  /\  b  <_  x )  ->  (
( abs `  ( F `  x )
)  <_  m  /\  ( abs `  ( ( G `  x )  -  0 ) )  <  ( y  / 
( ( abs `  m
)  +  1 ) ) ) ) )
52 simplrl 737 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  a  e.  RR )
53 simprl 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  b  e.  RR )
5440, 10syl5ss 3302 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  -> 
( dom  F  i^i  dom 
G )  C_  RR )
5554ad3antrrr 711 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( dom  F  i^i  dom  G )  C_  RR )
56 simprr 734 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  x  e.  ( dom  F  i^i  dom  G ) )
5755, 56sseldd 3292 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  x  e.  RR )
58 maxle 10710 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  x  e.  RR )  ->  ( if ( a  <_  b ,  b ,  a )  <_  x  <->  ( a  <_  x  /\  b  <_  x ) ) )
5952, 53, 57, 58syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( if ( a  <_  b , 
b ,  a )  <_  x  <->  ( a  <_  x  /\  b  <_  x ) ) )
6059biimpd 199 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( if ( a  <_  b , 
b ,  a )  <_  x  ->  (
a  <_  x  /\  b  <_  x ) ) )
616ad3antrrr 711 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  G : dom  G --> CC )
6243sseli 3287 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( dom  F  i^i  dom  G )  ->  x  e.  dom  G )
6362ad2antll 710 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  x  e.  dom  G )
6461, 63ffvelrnd 5810 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( G `  x )  e.  CC )
6564subid1d 9332 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( G `
 x )  - 
0 )  =  ( G `  x ) )
6665fveq2d 5672 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( abs `  (
( G `  x
)  -  0 ) )  =  ( abs `  ( G `  x
) ) )
6766breq1d 4163 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  ( ( G `  x )  -  0 ) )  <  (
y  /  ( ( abs `  m )  +  1 ) )  <-> 
( abs `  ( G `  x )
)  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )
6864abscld 12165 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( abs `  ( G `  x )
)  e.  RR )
6934adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( y  / 
( ( abs `  m
)  +  1 ) )  e.  RR+ )
7069rpred 10580 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( y  / 
( ( abs `  m
)  +  1 ) )  e.  RR )
71 ltle 9096 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( abs `  ( G `  x )
)  e.  RR  /\  ( y  /  (
( abs `  m
)  +  1 ) )  e.  RR )  ->  ( ( abs `  ( G `  x
) )  <  (
y  /  ( ( abs `  m )  +  1 ) )  ->  ( abs `  ( G `  x )
)  <_  ( y  /  ( ( abs `  m )  +  1 ) ) ) )
7268, 70, 71syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  ( G `  x
) )  <  (
y  /  ( ( abs `  m )  +  1 ) )  ->  ( abs `  ( G `  x )
)  <_  ( y  /  ( ( abs `  m )  +  1 ) ) ) )
7367, 72sylbid 207 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  ( ( G `  x )  -  0 ) )  <  (
y  /  ( ( abs `  m )  +  1 ) )  ->  ( abs `  ( G `  x )
)  <_  ( y  /  ( ( abs `  m )  +  1 ) ) ) )
7473anim2d 549 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( ( abs `  ( F `
 x ) )  <_  m  /\  ( abs `  ( ( G `
 x )  - 
0 ) )  < 
( y  /  (
( abs `  m
)  +  1 ) ) )  ->  (
( abs `  ( F `  x )
)  <_  m  /\  ( abs `  ( G `
 x ) )  <_  ( y  / 
( ( abs `  m
)  +  1 ) ) ) ) )
752ad3antrrr 711 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  F : dom  F --> CC )
7640sseli 3287 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( dom  F  i^i  dom  G )  ->  x  e.  dom  F )
7776ad2antll 710 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  x  e.  dom  F )
7875, 77ffvelrnd 5810 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( F `  x )  e.  CC )
7978abscld 12165 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( abs `  ( F `  x )
)  e.  RR )
8078absge0d 12173 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  0  <_  ( abs `  ( F `  x ) ) )
8179, 80jca 519 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  ( F `  x
) )  e.  RR  /\  0  <_  ( abs `  ( F `  x
) ) ) )
82 simplrr 738 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  m  e.  RR )
8364absge0d 12173 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  0  <_  ( abs `  ( G `  x ) ) )
8468, 83jca 519 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  ( G `  x
) )  e.  RR  /\  0  <_  ( abs `  ( G `  x
) ) ) )
85 lemul12a 9800 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( abs `  ( F `  x
) )  e.  RR  /\  0  <_  ( abs `  ( F `  x
) ) )  /\  m  e.  RR )  /\  ( ( ( abs `  ( G `  x
) )  e.  RR  /\  0  <_  ( abs `  ( G `  x
) ) )  /\  ( y  /  (
( abs `  m
)  +  1 ) )  e.  RR ) )  ->  ( (
( abs `  ( F `  x )
)  <_  m  /\  ( abs `  ( G `
 x ) )  <_  ( y  / 
( ( abs `  m
)  +  1 ) ) )  ->  (
( abs `  ( F `  x )
)  x.  ( abs `  ( G `  x
) ) )  <_ 
( m  x.  (
y  /  ( ( abs `  m )  +  1 ) ) ) ) )
8681, 82, 84, 70, 85syl22anc 1185 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( ( abs `  ( F `
 x ) )  <_  m  /\  ( abs `  ( G `  x ) )  <_ 
( y  /  (
( abs `  m
)  +  1 ) ) )  ->  (
( abs `  ( F `  x )
)  x.  ( abs `  ( G `  x
) ) )  <_ 
( m  x.  (
y  /  ( ( abs `  m )  +  1 ) ) ) ) )
8778, 64absmuld 12183 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  =  ( ( abs `  ( F `
 x ) )  x.  ( abs `  ( G `  x )
) ) )
8887breq1d 4163 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  ( ( F `  x )  x.  ( G `  x )
) )  <_  (
m  x.  ( y  /  ( ( abs `  m )  +  1 ) ) )  <->  ( ( abs `  ( F `  x ) )  x.  ( abs `  ( G `  x )
) )  <_  (
m  x.  ( y  /  ( ( abs `  m )  +  1 ) ) ) ) )
8982recnd 9047 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  m  e.  CC )
9028adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  y  e.  RR+ )
9190rpcnd 10582 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  y  e.  CC )
9233adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  m )  +  1 )  e.  RR+ )
9392rpcnd 10582 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  m )  +  1 )  e.  CC )
9492rpne0d 10585 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  m )  +  1 )  =/=  0 )
9589, 91, 93, 94divassd 9757 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( m  x.  y )  / 
( ( abs `  m
)  +  1 ) )  =  ( m  x.  ( y  / 
( ( abs `  m
)  +  1 ) ) ) )
96 peano2re 9171 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( abs `  m )  e.  RR  ->  (
( abs `  m
)  +  1 )  e.  RR )
9731, 96syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  ( ( abs `  m )  +  1 )  e.  RR )
9897adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  m )  +  1 )  e.  RR )
9931adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( abs `  m
)  e.  RR )
10082leabsd 12144 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  m  <_  ( abs `  m ) )
10199ltp1d 9873 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( abs `  m
)  <  ( ( abs `  m )  +  1 ) )
10282, 99, 98, 100, 101lelttrd 9160 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  m  <  (
( abs `  m
)  +  1 ) )
10382, 98, 90, 102ltmul1dd 10631 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( m  x.  y )  <  (
( ( abs `  m
)  +  1 )  x.  y ) )
10490rpred 10580 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  y  e.  RR )
10582, 104remulcld 9049 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( m  x.  y )  e.  RR )
106105, 104, 92ltdivmuld 10627 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( ( m  x.  y )  /  ( ( abs `  m )  +  1 ) )  <  y  <->  ( m  x.  y )  <  ( ( ( abs `  m )  +  1 )  x.  y ) ) )
107103, 106mpbird 224 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( m  x.  y )  / 
( ( abs `  m
)  +  1 ) )  <  y )
10895, 107eqbrtrrd 4175 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( m  x.  ( y  /  (
( abs `  m
)  +  1 ) ) )  <  y
)
10978, 64mulcld 9041 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( F `
 x )  x.  ( G `  x
) )  e.  CC )
110109abscld 12165 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  e.  RR )
11182, 70remulcld 9049 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( m  x.  ( y  /  (
( abs `  m
)  +  1 ) ) )  e.  RR )
112 lelttr 9098 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  e.  RR  /\  ( m  x.  (
y  /  ( ( abs `  m )  +  1 ) ) )  e.  RR  /\  y  e.  RR )  ->  ( ( ( abs `  ( ( F `  x )  x.  ( G `  x )
) )  <_  (
m  x.  ( y  /  ( ( abs `  m )  +  1 ) ) )  /\  ( m  x.  (
y  /  ( ( abs `  m )  +  1 ) ) )  <  y )  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) )
113110, 111, 104, 112syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( ( abs `  ( ( F `  x )  x.  ( G `  x ) ) )  <_  ( m  x.  ( y  /  (
( abs `  m
)  +  1 ) ) )  /\  (
m  x.  ( y  /  ( ( abs `  m )  +  1 ) ) )  < 
y )  ->  ( abs `  ( ( F `
 x )  x.  ( G `  x
) ) )  < 
y ) )
114108, 113mpan2d 656 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  ( ( F `  x )  x.  ( G `  x )
) )  <_  (
m  x.  ( y  /  ( ( abs `  m )  +  1 ) ) )  -> 
( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) )
11588, 114sylbird 227 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( ( abs `  ( F `
 x ) )  x.  ( abs `  ( G `  x )
) )  <_  (
m  x.  ( y  /  ( ( abs `  m )  +  1 ) ) )  -> 
( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) )
11674, 86, 1153syld 53 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( ( abs `  ( F `
 x ) )  <_  m  /\  ( abs `  ( ( G `
 x )  - 
0 ) )  < 
( y  /  (
( abs `  m
)  +  1 ) ) )  ->  ( abs `  ( ( F `
 x )  x.  ( G `  x
) ) )  < 
y ) )
11760, 116imim12d 70 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( ( a  <_  x  /\  b  <_  x )  -> 
( ( abs `  ( F `  x )
)  <_  m  /\  ( abs `  ( ( G `  x )  -  0 ) )  <  ( y  / 
( ( abs `  m
)  +  1 ) ) ) )  -> 
( if ( a  <_  b ,  b ,  a )  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) ) )
118117anassrs 630 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  ( a  e.  RR  /\  m  e.  RR ) )  /\  b  e.  RR )  /\  x  e.  ( dom  F  i^i  dom 
G ) )  -> 
( ( ( a  <_  x  /\  b  <_  x )  ->  (
( abs `  ( F `  x )
)  <_  m  /\  ( abs `  ( ( G `  x )  -  0 ) )  <  ( y  / 
( ( abs `  m
)  +  1 ) ) ) )  -> 
( if ( a  <_  b ,  b ,  a )  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) ) )
119118ralimdva 2727 . . . . . . . . . . 11  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  b  e.  RR )  ->  ( A. x  e.  ( dom  F  i^i  dom  G )
( ( a  <_  x  /\  b  <_  x
)  ->  ( ( abs `  ( F `  x ) )  <_  m  /\  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )  ->  A. x  e.  ( dom  F  i^i  dom  G ) ( if ( a  <_  b , 
b ,  a )  <_  x  ->  ( abs `  ( ( F `
 x )  x.  ( G `  x
) ) )  < 
y ) ) )
120 simpr 448 . . . . . . . . . . . 12  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  b  e.  RR )  ->  b  e.  RR )
121 simplrl 737 . . . . . . . . . . . 12  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  b  e.  RR )  ->  a  e.  RR )
122 ifcl 3718 . . . . . . . . . . . 12  |-  ( ( b  e.  RR  /\  a  e.  RR )  ->  if ( a  <_ 
b ,  b ,  a )  e.  RR )
123120, 121, 122syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  b  e.  RR )  ->  if ( a  <_  b , 
b ,  a )  e.  RR )
124119, 123jctild 528 . . . . . . . . . 10  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  b  e.  RR )  ->  ( A. x  e.  ( dom  F  i^i  dom  G )
( ( a  <_  x  /\  b  <_  x
)  ->  ( ( abs `  ( F `  x ) )  <_  m  /\  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )  ->  ( if ( a  <_  b , 
b ,  a )  e.  RR  /\  A. x  e.  ( dom  F  i^i  dom  G )
( if ( a  <_  b ,  b ,  a )  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) ) ) )
125 breq1 4156 . . . . . . . . . . . . 13  |-  ( z  =  if ( a  <_  b ,  b ,  a )  -> 
( z  <_  x  <->  if ( a  <_  b ,  b ,  a )  <_  x )
)
126125imbi1d 309 . . . . . . . . . . . 12  |-  ( z  =  if ( a  <_  b ,  b ,  a )  -> 
( ( z  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y )  <-> 
( if ( a  <_  b ,  b ,  a )  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) ) )
127126ralbidv 2669 . . . . . . . . . . 11  |-  ( z  =  if ( a  <_  b ,  b ,  a )  -> 
( A. x  e.  ( dom  F  i^i  dom 
G ) ( z  <_  x  ->  ( abs `  ( ( F `
 x )  x.  ( G `  x
) ) )  < 
y )  <->  A. x  e.  ( dom  F  i^i  dom 
G ) ( if ( a  <_  b ,  b ,  a )  <_  x  ->  ( abs `  ( ( F `  x )  x.  ( G `  x ) ) )  <  y ) ) )
128127rspcev 2995 . . . . . . . . . 10  |-  ( ( if ( a  <_ 
b ,  b ,  a )  e.  RR  /\ 
A. x  e.  ( dom  F  i^i  dom  G ) ( if ( a  <_  b , 
b ,  a )  <_  x  ->  ( abs `  ( ( F `
 x )  x.  ( G `  x
) ) )  < 
y ) )  ->  E. z  e.  RR  A. x  e.  ( dom 
F  i^i  dom  G ) ( z  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) )
12951, 124, 128syl56 32 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  b  e.  RR )  ->  ( ( A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )  /\  A. x  e.  dom  G ( b  <_  x  ->  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )  ->  E. z  e.  RR  A. x  e.  ( dom 
F  i^i  dom  G ) ( z  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) ) )
130129exp3acom23 1378 . . . . . . . 8  |-  ( ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  b  e.  RR )  ->  ( A. x  e.  dom  G ( b  <_  x  ->  ( abs `  ( ( G `  x )  -  0 ) )  <  ( y  / 
( ( abs `  m
)  +  1 ) ) )  ->  ( A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )  ->  E. z  e.  RR  A. x  e.  ( dom 
F  i^i  dom  G ) ( z  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) ) ) )
131130rexlimdva 2773 . . . . . . 7  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  ( E. b  e.  RR  A. x  e.  dom  G ( b  <_  x  ->  ( abs `  ( ( G `
 x )  - 
0 ) )  < 
( y  /  (
( abs `  m
)  +  1 ) ) )  ->  ( A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )  ->  E. z  e.  RR  A. x  e.  ( dom 
F  i^i  dom  G ) ( z  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) ) ) )
13239, 131mpd 15 . . . . . 6  |-  ( ( ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  ( A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `
 x ) )  <_  m )  ->  E. z  e.  RR  A. x  e.  ( dom 
F  i^i  dom  G ) ( z  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) ) )
133132rexlimdvva 2780 . . . . 5  |-  ( ( ( F  e.  O
( 1 )  /\  G 
~~> r  0 )  /\  y  e.  RR+ )  -> 
( E. a  e.  RR  E. m  e.  RR  A. x  e. 
dom  F ( a  <_  x  ->  ( abs `  ( F `  x ) )  <_  m )  ->  E. z  e.  RR  A. x  e.  ( dom  F  i^i  dom 
G ) ( z  <_  x  ->  ( abs `  ( ( F `
 x )  x.  ( G `  x
) ) )  < 
y ) ) )
13424, 133mpd 15 . . . 4  |-  ( ( ( F  e.  O
( 1 )  /\  G 
~~> r  0 )  /\  y  e.  RR+ )  ->  E. z  e.  RR  A. x  e.  ( dom 
F  i^i  dom  G ) ( z  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) )
135134ralrimiva 2732 . . 3  |-  ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  ->  A. y  e.  RR+  E. z  e.  RR  A. x  e.  ( dom  F  i^i  dom 
G ) ( z  <_  x  ->  ( abs `  ( ( F `
 x )  x.  ( G `  x
) ) )  < 
y ) )
136 ffvelrn 5807 . . . . . . 7  |-  ( ( F : dom  F --> CC  /\  x  e.  dom  F )  ->  ( F `  x )  e.  CC )
1372, 76, 136syl2an 464 . . . . . 6  |-  ( ( ( F  e.  O
( 1 )  /\  G 
~~> r  0 )  /\  x  e.  ( dom  F  i^i  dom  G )
)  ->  ( F `  x )  e.  CC )
138 ffvelrn 5807 . . . . . . 7  |-  ( ( G : dom  G --> CC  /\  x  e.  dom  G )  ->  ( G `  x )  e.  CC )
1396, 62, 138syl2an 464 . . . . . 6  |-  ( ( ( F  e.  O
( 1 )  /\  G 
~~> r  0 )  /\  x  e.  ( dom  F  i^i  dom  G )
)  ->  ( G `  x )  e.  CC )
140137, 139mulcld 9041 . . . . 5  |-  ( ( ( F  e.  O
( 1 )  /\  G 
~~> r  0 )  /\  x  e.  ( dom  F  i^i  dom  G )
)  ->  ( ( F `  x )  x.  ( G `  x
) )  e.  CC )
141140ralrimiva 2732 . . . 4  |-  ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  ->  A. x  e.  ( dom  F  i^i  dom  G
) ( ( F `
 x )  x.  ( G `  x
) )  e.  CC )
142141, 54rlim0 12229 . . 3  |-  ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  -> 
( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x )  x.  ( G `  x ) ) )  ~~> r  0  <->  A. y  e.  RR+  E. z  e.  RR  A. x  e.  ( dom  F  i^i  dom 
G ) ( z  <_  x  ->  ( abs `  ( ( F `
 x )  x.  ( G `  x
) ) )  < 
y ) ) )
143135, 142mpbird 224 . 2  |-  ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  -> 
( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x )  x.  ( G `  x
) ) )  ~~> r  0 )
14421, 143eqbrtrd 4173 1  |-  ( ( F  e.  O ( 1 )  /\  G  ~~> r  0 )  -> 
( F  o F  x.  G )  ~~> r  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2649   E.wrex 2650   _Vcvv 2899    i^i cin 3262    C_ wss 3263   ifcif 3682   class class class wbr 4153    e. cmpt 4207   dom cdm 4818    Fn wfn 5389   -->wf 5390   ` cfv 5394  (class class class)co 6020    o Fcof 6242   CCcc 8921   RRcr 8922   0cc0 8923   1c1 8924    + caddc 8926    x. cmul 8928    < clt 9053    <_ cle 9054    - cmin 9223    / cdiv 9609   RR+crp 10544   abscabs 11966    ~~> r crli 12206   O ( 1 )co1 12207
This theorem is referenced by:  chtppilimlem2  21035  chpchtlim  21040
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-pm 6957  df-en 7046  df-dom 7047  df-sdom 7048  df-sup 7381  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-n0 10154  df-z 10215  df-uz 10421  df-rp 10545  df-ico 10854  df-seq 11251  df-exp 11310  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-rlim 12210  df-o1 12211
  Copyright terms: Public domain W3C validator