MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oa0r Unicode version

Theorem oa0r 6533
Description: Ordinal addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. (Contributed by NM, 5-May-1995.)
Assertion
Ref Expression
oa0r  |-  ( A  e.  On  ->  ( (/) 
+o  A )  =  A )

Proof of Theorem oa0r
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5828 . . 3  |-  ( x  =  (/)  ->  ( (/)  +o  x )  =  (
(/)  +o  (/) ) )
2 id 19 . . 3  |-  ( x  =  (/)  ->  x  =  (/) )
31, 2eqeq12d 2298 . 2  |-  ( x  =  (/)  ->  ( (
(/)  +o  x )  =  x  <->  ( (/)  +o  (/) )  =  (/) ) )
4 oveq2 5828 . . 3  |-  ( x  =  y  ->  ( (/) 
+o  x )  =  ( (/)  +o  y
) )
5 id 19 . . 3  |-  ( x  =  y  ->  x  =  y )
64, 5eqeq12d 2298 . 2  |-  ( x  =  y  ->  (
( (/)  +o  x )  =  x  <->  ( (/)  +o  y
)  =  y ) )
7 oveq2 5828 . . 3  |-  ( x  =  suc  y  -> 
( (/)  +o  x )  =  ( (/)  +o  suc  y ) )
8 id 19 . . 3  |-  ( x  =  suc  y  ->  x  =  suc  y )
97, 8eqeq12d 2298 . 2  |-  ( x  =  suc  y  -> 
( ( (/)  +o  x
)  =  x  <->  ( (/)  +o  suc  y )  =  suc  y ) )
10 oveq2 5828 . . 3  |-  ( x  =  A  ->  ( (/) 
+o  x )  =  ( (/)  +o  A
) )
11 id 19 . . 3  |-  ( x  =  A  ->  x  =  A )
1210, 11eqeq12d 2298 . 2  |-  ( x  =  A  ->  (
( (/)  +o  x )  =  x  <->  ( (/)  +o  A
)  =  A ) )
13 0elon 4444 . . 3  |-  (/)  e.  On
14 oa0 6511 . . 3  |-  ( (/)  e.  On  ->  ( (/)  +o  (/) )  =  (/) )
1513, 14ax-mp 8 . 2  |-  ( (/)  +o  (/) )  =  (/)
16 oasuc 6519 . . . . 5  |-  ( (
(/)  e.  On  /\  y  e.  On )  ->  ( (/) 
+o  suc  y )  =  suc  ( (/)  +o  y
) )
1713, 16mpan 651 . . . 4  |-  ( y  e.  On  ->  ( (/) 
+o  suc  y )  =  suc  ( (/)  +o  y
) )
18 suceq 4456 . . . 4  |-  ( (
(/)  +o  y )  =  y  ->  suc  ( (/) 
+o  y )  =  suc  y )
1917, 18sylan9eq 2336 . . 3  |-  ( ( y  e.  On  /\  ( (/)  +o  y )  =  y )  -> 
( (/)  +o  suc  y
)  =  suc  y
)
2019ex 423 . 2  |-  ( y  e.  On  ->  (
( (/)  +o  y )  =  y  ->  ( (/) 
+o  suc  y )  =  suc  y ) )
21 iuneq2 3922 . . . 4  |-  ( A. y  e.  x  ( (/) 
+o  y )  =  y  ->  U_ y  e.  x  ( (/)  +o  y
)  =  U_ y  e.  x  y )
22 uniiun 3956 . . . 4  |-  U. x  =  U_ y  e.  x  y
2321, 22syl6eqr 2334 . . 3  |-  ( A. y  e.  x  ( (/) 
+o  y )  =  y  ->  U_ y  e.  x  ( (/)  +o  y
)  =  U. x
)
24 vex 2792 . . . . 5  |-  x  e. 
_V
25 oalim 6527 . . . . . 6  |-  ( (
(/)  e.  On  /\  (
x  e.  _V  /\  Lim  x ) )  -> 
( (/)  +o  x )  =  U_ y  e.  x  ( (/)  +o  y
) )
2613, 25mpan 651 . . . . 5  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( (/) 
+o  x )  = 
U_ y  e.  x  ( (/)  +o  y ) )
2724, 26mpan 651 . . . 4  |-  ( Lim  x  ->  ( (/)  +o  x
)  =  U_ y  e.  x  ( (/)  +o  y
) )
28 limuni 4451 . . . 4  |-  ( Lim  x  ->  x  =  U. x )
2927, 28eqeq12d 2298 . . 3  |-  ( Lim  x  ->  ( ( (/) 
+o  x )  =  x  <->  U_ y  e.  x  ( (/)  +o  y )  =  U. x ) )
3023, 29syl5ibr 212 . 2  |-  ( Lim  x  ->  ( A. y  e.  x  ( (/) 
+o  y )  =  y  ->  ( (/)  +o  x
)  =  x ) )
313, 6, 9, 12, 15, 20, 30tfinds 4649 1  |-  ( A  e.  On  ->  ( (/) 
+o  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1685   A.wral 2544   _Vcvv 2789   (/)c0 3456   U.cuni 3828   U_ciun 3906   Oncon0 4391   Lim wlim 4392   suc csuc 4393  (class class class)co 5820    +o coa 6472
This theorem is referenced by:  om1  6536  oaword2  6547  oeeui  6596  oaabs2  6639  cantnfp1  7379
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-recs 6384  df-rdg 6419  df-oadd 6479
  Copyright terms: Public domain W3C validator