MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oa0r Unicode version

Theorem oa0r 6539
Description: Ordinal addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. (Contributed by NM, 5-May-1995.)
Assertion
Ref Expression
oa0r  |-  ( A  e.  On  ->  ( (/) 
+o  A )  =  A )

Proof of Theorem oa0r
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5868 . . 3  |-  ( x  =  (/)  ->  ( (/)  +o  x )  =  (
(/)  +o  (/) ) )
2 id 19 . . 3  |-  ( x  =  (/)  ->  x  =  (/) )
31, 2eqeq12d 2299 . 2  |-  ( x  =  (/)  ->  ( (
(/)  +o  x )  =  x  <->  ( (/)  +o  (/) )  =  (/) ) )
4 oveq2 5868 . . 3  |-  ( x  =  y  ->  ( (/) 
+o  x )  =  ( (/)  +o  y
) )
5 id 19 . . 3  |-  ( x  =  y  ->  x  =  y )
64, 5eqeq12d 2299 . 2  |-  ( x  =  y  ->  (
( (/)  +o  x )  =  x  <->  ( (/)  +o  y
)  =  y ) )
7 oveq2 5868 . . 3  |-  ( x  =  suc  y  -> 
( (/)  +o  x )  =  ( (/)  +o  suc  y ) )
8 id 19 . . 3  |-  ( x  =  suc  y  ->  x  =  suc  y )
97, 8eqeq12d 2299 . 2  |-  ( x  =  suc  y  -> 
( ( (/)  +o  x
)  =  x  <->  ( (/)  +o  suc  y )  =  suc  y ) )
10 oveq2 5868 . . 3  |-  ( x  =  A  ->  ( (/) 
+o  x )  =  ( (/)  +o  A
) )
11 id 19 . . 3  |-  ( x  =  A  ->  x  =  A )
1210, 11eqeq12d 2299 . 2  |-  ( x  =  A  ->  (
( (/)  +o  x )  =  x  <->  ( (/)  +o  A
)  =  A ) )
13 0elon 4447 . . 3  |-  (/)  e.  On
14 oa0 6517 . . 3  |-  ( (/)  e.  On  ->  ( (/)  +o  (/) )  =  (/) )
1513, 14ax-mp 8 . 2  |-  ( (/)  +o  (/) )  =  (/)
16 oasuc 6525 . . . . 5  |-  ( (
(/)  e.  On  /\  y  e.  On )  ->  ( (/) 
+o  suc  y )  =  suc  ( (/)  +o  y
) )
1713, 16mpan 651 . . . 4  |-  ( y  e.  On  ->  ( (/) 
+o  suc  y )  =  suc  ( (/)  +o  y
) )
18 suceq 4459 . . . 4  |-  ( (
(/)  +o  y )  =  y  ->  suc  ( (/) 
+o  y )  =  suc  y )
1917, 18sylan9eq 2337 . . 3  |-  ( ( y  e.  On  /\  ( (/)  +o  y )  =  y )  -> 
( (/)  +o  suc  y
)  =  suc  y
)
2019ex 423 . 2  |-  ( y  e.  On  ->  (
( (/)  +o  y )  =  y  ->  ( (/) 
+o  suc  y )  =  suc  y ) )
21 iuneq2 3923 . . . 4  |-  ( A. y  e.  x  ( (/) 
+o  y )  =  y  ->  U_ y  e.  x  ( (/)  +o  y
)  =  U_ y  e.  x  y )
22 uniiun 3957 . . . 4  |-  U. x  =  U_ y  e.  x  y
2321, 22syl6eqr 2335 . . 3  |-  ( A. y  e.  x  ( (/) 
+o  y )  =  y  ->  U_ y  e.  x  ( (/)  +o  y
)  =  U. x
)
24 vex 2793 . . . . 5  |-  x  e. 
_V
25 oalim 6533 . . . . . 6  |-  ( (
(/)  e.  On  /\  (
x  e.  _V  /\  Lim  x ) )  -> 
( (/)  +o  x )  =  U_ y  e.  x  ( (/)  +o  y
) )
2613, 25mpan 651 . . . . 5  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( (/) 
+o  x )  = 
U_ y  e.  x  ( (/)  +o  y ) )
2724, 26mpan 651 . . . 4  |-  ( Lim  x  ->  ( (/)  +o  x
)  =  U_ y  e.  x  ( (/)  +o  y
) )
28 limuni 4454 . . . 4  |-  ( Lim  x  ->  x  =  U. x )
2927, 28eqeq12d 2299 . . 3  |-  ( Lim  x  ->  ( ( (/) 
+o  x )  =  x  <->  U_ y  e.  x  ( (/)  +o  y )  =  U. x ) )
3023, 29syl5ibr 212 . 2  |-  ( Lim  x  ->  ( A. y  e.  x  ( (/) 
+o  y )  =  y  ->  ( (/)  +o  x
)  =  x ) )
313, 6, 9, 12, 15, 20, 30tfinds 4652 1  |-  ( A  e.  On  ->  ( (/) 
+o  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   A.wral 2545   _Vcvv 2790   (/)c0 3457   U.cuni 3829   U_ciun 3907   Oncon0 4394   Lim wlim 4395   suc csuc 4396  (class class class)co 5860    +o coa 6478
This theorem is referenced by:  om1  6542  oaword2  6553  oeeui  6602  oaabs2  6645  cantnfp1  7385
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-recs 6390  df-rdg 6425  df-oadd 6485
  Copyright terms: Public domain W3C validator