MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oa0r Unicode version

Theorem oa0r 6505
Description: Ordinal addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. (Contributed by NM, 5-May-1995.)
Assertion
Ref Expression
oa0r  |-  ( A  e.  On  ->  ( (/) 
+o  A )  =  A )

Proof of Theorem oa0r
StepHypRef Expression
1 oveq2 5800 . . 3  |-  ( x  =  (/)  ->  ( (/)  +o  x )  =  (
(/)  +o  (/) ) )
2 id 21 . . 3  |-  ( x  =  (/)  ->  x  =  (/) )
31, 2eqeq12d 2272 . 2  |-  ( x  =  (/)  ->  ( (
(/)  +o  x )  =  x  <->  ( (/)  +o  (/) )  =  (/) ) )
4 oveq2 5800 . . 3  |-  ( x  =  y  ->  ( (/) 
+o  x )  =  ( (/)  +o  y
) )
5 id 21 . . 3  |-  ( x  =  y  ->  x  =  y )
64, 5eqeq12d 2272 . 2  |-  ( x  =  y  ->  (
( (/)  +o  x )  =  x  <->  ( (/)  +o  y
)  =  y ) )
7 oveq2 5800 . . 3  |-  ( x  =  suc  y  -> 
( (/)  +o  x )  =  ( (/)  +o  suc  y ) )
8 id 21 . . 3  |-  ( x  =  suc  y  ->  x  =  suc  y )
97, 8eqeq12d 2272 . 2  |-  ( x  =  suc  y  -> 
( ( (/)  +o  x
)  =  x  <->  ( (/)  +o  suc  y )  =  suc  y ) )
10 oveq2 5800 . . 3  |-  ( x  =  A  ->  ( (/) 
+o  x )  =  ( (/)  +o  A
) )
11 id 21 . . 3  |-  ( x  =  A  ->  x  =  A )
1210, 11eqeq12d 2272 . 2  |-  ( x  =  A  ->  (
( (/)  +o  x )  =  x  <->  ( (/)  +o  A
)  =  A ) )
13 0elon 4417 . . 3  |-  (/)  e.  On
14 oa0 6483 . . 3  |-  ( (/)  e.  On  ->  ( (/)  +o  (/) )  =  (/) )
1513, 14ax-mp 10 . 2  |-  ( (/)  +o  (/) )  =  (/)
16 oasuc 6491 . . . . 5  |-  ( (
(/)  e.  On  /\  y  e.  On )  ->  ( (/) 
+o  suc  y )  =  suc  ( (/)  +o  y
) )
1713, 16mpan 654 . . . 4  |-  ( y  e.  On  ->  ( (/) 
+o  suc  y )  =  suc  ( (/)  +o  y
) )
18 suceq 4429 . . . 4  |-  ( (
(/)  +o  y )  =  y  ->  suc  ( (/) 
+o  y )  =  suc  y )
1917, 18sylan9eq 2310 . . 3  |-  ( ( y  e.  On  /\  ( (/)  +o  y )  =  y )  -> 
( (/)  +o  suc  y
)  =  suc  y
)
2019ex 425 . 2  |-  ( y  e.  On  ->  (
( (/)  +o  y )  =  y  ->  ( (/) 
+o  suc  y )  =  suc  y ) )
21 iuneq2 3895 . . . 4  |-  ( A. y  e.  x  ( (/) 
+o  y )  =  y  ->  U_ y  e.  x  ( (/)  +o  y
)  =  U_ y  e.  x  y )
22 uniiun 3929 . . . 4  |-  U. x  =  U_ y  e.  x  y
2321, 22syl6eqr 2308 . . 3  |-  ( A. y  e.  x  ( (/) 
+o  y )  =  y  ->  U_ y  e.  x  ( (/)  +o  y
)  =  U. x
)
24 vex 2766 . . . . 5  |-  x  e. 
_V
25 oalim 6499 . . . . . 6  |-  ( (
(/)  e.  On  /\  (
x  e.  _V  /\  Lim  x ) )  -> 
( (/)  +o  x )  =  U_ y  e.  x  ( (/)  +o  y
) )
2613, 25mpan 654 . . . . 5  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( (/) 
+o  x )  = 
U_ y  e.  x  ( (/)  +o  y ) )
2724, 26mpan 654 . . . 4  |-  ( Lim  x  ->  ( (/)  +o  x
)  =  U_ y  e.  x  ( (/)  +o  y
) )
28 limuni 4424 . . . 4  |-  ( Lim  x  ->  x  =  U. x )
2927, 28eqeq12d 2272 . . 3  |-  ( Lim  x  ->  ( ( (/) 
+o  x )  =  x  <->  U_ y  e.  x  ( (/)  +o  y )  =  U. x ) )
3023, 29syl5ibr 214 . 2  |-  ( Lim  x  ->  ( A. y  e.  x  ( (/) 
+o  y )  =  y  ->  ( (/)  +o  x
)  =  x ) )
313, 6, 9, 12, 15, 20, 30tfinds 4622 1  |-  ( A  e.  On  ->  ( (/) 
+o  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2518   _Vcvv 2763   (/)c0 3430   U.cuni 3801   U_ciun 3879   Oncon0 4364   Lim wlim 4365   suc csuc 4366  (class class class)co 5792    +o coa 6444
This theorem is referenced by:  om1  6508  oaword2  6519  oeeui  6568  oaabs2  6611  cantnfp1  7351
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-recs 6356  df-rdg 6391  df-oadd 6451
  Copyright terms: Public domain W3C validator