MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaabs Unicode version

Theorem oaabs 6610
Description: Ordinal addition absorbs a natural number added to the left of a transfinite number. Proposition 8.10 of [TakeutiZaring] p. 59. (Contributed by NM, 9-Dec-2004.) (Proof shortened by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
oaabs  |-  ( ( ( A  e.  om  /\  B  e.  On )  /\  om  C_  B
)  ->  ( A  +o  B )  =  B )

Proof of Theorem oaabs
StepHypRef Expression
1 ssexg 4134 . . . . . . . . 9  |-  ( ( om  C_  B  /\  B  e.  On )  ->  om  e.  _V )
21ex 425 . . . . . . . 8  |-  ( om  C_  B  ->  ( B  e.  On  ->  om  e.  _V ) )
3 omelon2 4640 . . . . . . . 8  |-  ( om  e.  _V  ->  om  e.  On )
42, 3syl6com 33 . . . . . . 7  |-  ( B  e.  On  ->  ( om  C_  B  ->  om  e.  On ) )
54imp 420 . . . . . 6  |-  ( ( B  e.  On  /\  om  C_  B )  ->  om  e.  On )
65adantll 697 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  On )  /\  om  C_  B
)  ->  om  e.  On )
7 simplr 734 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  On )  /\  om  C_  B
)  ->  B  e.  On )
86, 7jca 520 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  On )  /\  om  C_  B
)  ->  ( om  e.  On  /\  B  e.  On ) )
9 oawordeu 6521 . . . 4  |-  ( ( ( om  e.  On  /\  B  e.  On )  /\  om  C_  B
)  ->  E! x  e.  On  ( om  +o  x )  =  B )
108, 9sylancom 651 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  On )  /\  om  C_  B
)  ->  E! x  e.  On  ( om  +o  x )  =  B )
11 reurex 2729 . . 3  |-  ( E! x  e.  On  ( om  +o  x )  =  B  ->  E. x  e.  On  ( om  +o  x )  =  B )
1210, 11syl 17 . 2  |-  ( ( ( A  e.  om  /\  B  e.  On )  /\  om  C_  B
)  ->  E. x  e.  On  ( om  +o  x )  =  B )
13 nnon 4634 . . . . . . 7  |-  ( A  e.  om  ->  A  e.  On )
1413ad3antrrr 713 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  On )  /\  om  C_  B
)  /\  x  e.  On )  ->  A  e.  On )
156adantr 453 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  On )  /\  om  C_  B
)  /\  x  e.  On )  ->  om  e.  On )
16 simpr 449 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  On )  /\  om  C_  B
)  /\  x  e.  On )  ->  x  e.  On )
17 oaass 6527 . . . . . 6  |-  ( ( A  e.  On  /\  om  e.  On  /\  x  e.  On )  ->  (
( A  +o  om )  +o  x )  =  ( A  +o  ( om  +o  x ) ) )
1814, 15, 16, 17syl3anc 1187 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  On )  /\  om  C_  B
)  /\  x  e.  On )  ->  ( ( A  +o  om )  +o  x )  =  ( A  +o  ( om 
+o  x ) ) )
19 simpll 733 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  On )  /\  om  C_  B
)  ->  A  e.  om )
20 oaabslem 6609 . . . . . . . 8  |-  ( ( om  e.  On  /\  A  e.  om )  ->  ( A  +o  om )  =  om )
216, 19, 20syl2anc 645 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  On )  /\  om  C_  B
)  ->  ( A  +o  om )  =  om )
2221adantr 453 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  On )  /\  om  C_  B
)  /\  x  e.  On )  ->  ( A  +o  om )  =  om )
2322oveq1d 5807 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  On )  /\  om  C_  B
)  /\  x  e.  On )  ->  ( ( A  +o  om )  +o  x )  =  ( om  +o  x ) )
2418, 23eqtr3d 2292 . . . 4  |-  ( ( ( ( A  e. 
om  /\  B  e.  On )  /\  om  C_  B
)  /\  x  e.  On )  ->  ( A  +o  ( om  +o  x ) )  =  ( om  +o  x
) )
25 oveq2 5800 . . . . 5  |-  ( ( om  +o  x )  =  B  ->  ( A  +o  ( om  +o  x ) )  =  ( A  +o  B
) )
26 id 21 . . . . 5  |-  ( ( om  +o  x )  =  B  ->  ( om  +o  x )  =  B )
2725, 26eqeq12d 2272 . . . 4  |-  ( ( om  +o  x )  =  B  ->  (
( A  +o  ( om  +o  x ) )  =  ( om  +o  x )  <->  ( A  +o  B )  =  B ) )
2824, 27syl5ibcom 213 . . 3  |-  ( ( ( ( A  e. 
om  /\  B  e.  On )  /\  om  C_  B
)  /\  x  e.  On )  ->  ( ( om  +o  x )  =  B  ->  ( A  +o  B )  =  B ) )
2928rexlimdva 2642 . 2  |-  ( ( ( A  e.  om  /\  B  e.  On )  /\  om  C_  B
)  ->  ( E. x  e.  On  ( om  +o  x )  =  B  ->  ( A  +o  B )  =  B ) )
3012, 29mpd 16 1  |-  ( ( ( A  e.  om  /\  B  e.  On )  /\  om  C_  B
)  ->  ( A  +o  B )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   E.wrex 2519   E!wreu 2520   _Vcvv 2763    C_ wss 3127   Oncon0 4364   omcom 4628  (class class class)co 5792    +o coa 6444
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-recs 6356  df-rdg 6391  df-oadd 6451
  Copyright terms: Public domain W3C validator