MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacl Unicode version

Theorem oacl 6770
Description: Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. (Contributed by NM, 5-May-1995.)
Assertion
Ref Expression
oacl  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  e.  On )

Proof of Theorem oacl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6080 . . . 4  |-  ( x  =  (/)  ->  ( A  +o  x )  =  ( A  +o  (/) ) )
21eleq1d 2501 . . 3  |-  ( x  =  (/)  ->  ( ( A  +o  x )  e.  On  <->  ( A  +o  (/) )  e.  On ) )
3 oveq2 6080 . . . 4  |-  ( x  =  y  ->  ( A  +o  x )  =  ( A  +o  y
) )
43eleq1d 2501 . . 3  |-  ( x  =  y  ->  (
( A  +o  x
)  e.  On  <->  ( A  +o  y )  e.  On ) )
5 oveq2 6080 . . . 4  |-  ( x  =  suc  y  -> 
( A  +o  x
)  =  ( A  +o  suc  y ) )
65eleq1d 2501 . . 3  |-  ( x  =  suc  y  -> 
( ( A  +o  x )  e.  On  <->  ( A  +o  suc  y
)  e.  On ) )
7 oveq2 6080 . . . 4  |-  ( x  =  B  ->  ( A  +o  x )  =  ( A  +o  B
) )
87eleq1d 2501 . . 3  |-  ( x  =  B  ->  (
( A  +o  x
)  e.  On  <->  ( A  +o  B )  e.  On ) )
9 oa0 6751 . . . . 5  |-  ( A  e.  On  ->  ( A  +o  (/) )  =  A )
109eleq1d 2501 . . . 4  |-  ( A  e.  On  ->  (
( A  +o  (/) )  e.  On  <->  A  e.  On ) )
1110ibir 234 . . 3  |-  ( A  e.  On  ->  ( A  +o  (/) )  e.  On )
12 suceloni 4784 . . . . 5  |-  ( ( A  +o  y )  e.  On  ->  suc  ( A  +o  y
)  e.  On )
13 oasuc 6759 . . . . . 6  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y
) )
1413eleq1d 2501 . . . . 5  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( ( A  +o  suc  y )  e.  On  <->  suc  ( A  +o  y
)  e.  On ) )
1512, 14syl5ibr 213 . . . 4  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( ( A  +o  y )  e.  On  ->  ( A  +o  suc  y )  e.  On ) )
1615expcom 425 . . 3  |-  ( y  e.  On  ->  ( A  e.  On  ->  ( ( A  +o  y
)  e.  On  ->  ( A  +o  suc  y
)  e.  On ) ) )
17 vex 2951 . . . . . 6  |-  x  e. 
_V
18 iunon 6591 . . . . . 6  |-  ( ( x  e.  _V  /\  A. y  e.  x  ( A  +o  y )  e.  On )  ->  U_ y  e.  x  ( A  +o  y
)  e.  On )
1917, 18mpan 652 . . . . 5  |-  ( A. y  e.  x  ( A  +o  y )  e.  On  ->  U_ y  e.  x  ( A  +o  y )  e.  On )
20 oalim 6767 . . . . . . 7  |-  ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( A  +o  x )  =  U_ y  e.  x  ( A  +o  y ) )
2117, 20mpanr1 665 . . . . . 6  |-  ( ( A  e.  On  /\  Lim  x )  ->  ( A  +o  x )  = 
U_ y  e.  x  ( A  +o  y
) )
2221eleq1d 2501 . . . . 5  |-  ( ( A  e.  On  /\  Lim  x )  ->  (
( A  +o  x
)  e.  On  <->  U_ y  e.  x  ( A  +o  y )  e.  On ) )
2319, 22syl5ibr 213 . . . 4  |-  ( ( A  e.  On  /\  Lim  x )  ->  ( A. y  e.  x  ( A  +o  y
)  e.  On  ->  ( A  +o  x )  e.  On ) )
2423expcom 425 . . 3  |-  ( Lim  x  ->  ( A  e.  On  ->  ( A. y  e.  x  ( A  +o  y )  e.  On  ->  ( A  +o  x )  e.  On ) ) )
252, 4, 6, 8, 11, 16, 24tfinds3 4835 . 2  |-  ( B  e.  On  ->  ( A  e.  On  ->  ( A  +o  B )  e.  On ) )
2625impcom 420 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   _Vcvv 2948   (/)c0 3620   U_ciun 4085   Oncon0 4573   Lim wlim 4574   suc csuc 4575  (class class class)co 6072    +o coa 6712
This theorem is referenced by:  omcl  6771  oaord  6781  oacan  6782  oaword  6783  oawordri  6784  oawordeulem  6788  oalimcl  6794  oaass  6795  oaf1o  6797  odi  6813  omopth2  6818  oeoalem  6830  oeoa  6831  oancom  7595  cantnfvalf  7609  dfac12lem2  8013  cdanum  8068  wunex3  8605
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-recs 6624  df-rdg 6659  df-oadd 6719
  Copyright terms: Public domain W3C validator