MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oalim Unicode version

Theorem oalim 6485
Description: Ordinal addition with a limit ordinal. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-Aug-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oalim  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  +o  B )  =  U_ x  e.  B  ( A  +o  x ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem oalim
StepHypRef Expression
1 limelon 4413 . . 3  |-  ( ( B  e.  C  /\  Lim  B )  ->  B  e.  On )
2 simpr 449 . . 3  |-  ( ( B  e.  C  /\  Lim  B )  ->  Lim  B )
31, 2jca 520 . 2  |-  ( ( B  e.  C  /\  Lim  B )  ->  ( B  e.  On  /\  Lim  B ) )
4 rdglim2a 6400 . . . 4  |-  ( ( B  e.  On  /\  Lim  B )  ->  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  B
)  =  U_ x  e.  B  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  x
) )
54adantl 454 . . 3  |-  ( ( A  e.  On  /\  ( B  e.  On  /\ 
Lim  B ) )  ->  ( rec (
( y  e.  _V  |->  suc  y ) ,  A
) `  B )  =  U_ x  e.  B  ( rec ( ( y  e.  _V  |->  suc  y
) ,  A ) `
 x ) )
6 oav 6464 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  B
) )
7 onelon 4375 . . . . . . . 8  |-  ( ( B  e.  On  /\  x  e.  B )  ->  x  e.  On )
8 oav 6464 . . . . . . . 8  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  +o  x
)  =  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  x
) )
97, 8sylan2 462 . . . . . . 7  |-  ( ( A  e.  On  /\  ( B  e.  On  /\  x  e.  B ) )  ->  ( A  +o  x )  =  ( rec ( ( y  e.  _V  |->  suc  y
) ,  A ) `
 x ) )
109anassrs 632 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  x  e.  B
)  ->  ( A  +o  x )  =  ( rec ( ( y  e.  _V  |->  suc  y
) ,  A ) `
 x ) )
1110iuneq2dv 3886 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  U_ x  e.  B  ( A  +o  x
)  =  U_ x  e.  B  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  x
) )
126, 11eqeq12d 2270 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  +o  B )  =  U_ x  e.  B  ( A  +o  x )  <->  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  B
)  =  U_ x  e.  B  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  x
) ) )
1312adantrr 700 . . 3  |-  ( ( A  e.  On  /\  ( B  e.  On  /\ 
Lim  B ) )  ->  ( ( A  +o  B )  = 
U_ x  e.  B  ( A  +o  x
)  <->  ( rec (
( y  e.  _V  |->  suc  y ) ,  A
) `  B )  =  U_ x  e.  B  ( rec ( ( y  e.  _V  |->  suc  y
) ,  A ) `
 x ) ) )
145, 13mpbird 225 . 2  |-  ( ( A  e.  On  /\  ( B  e.  On  /\ 
Lim  B ) )  ->  ( A  +o  B )  =  U_ x  e.  B  ( A  +o  x ) )
153, 14sylan2 462 1  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  +o  B )  =  U_ x  e.  B  ( A  +o  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   _Vcvv 2757   U_ciun 3865    e. cmpt 4037   Oncon0 4350   Lim wlim 4351   suc csuc 4352   ` cfv 4659  (class class class)co 5778   reccrdg 6376    +o coa 6430
This theorem is referenced by:  oacl  6488  oa0r  6491  oaordi  6498  oawordri  6502  oawordeulem  6506  oalimcl  6512  oaass  6513  oarec  6514  odi  6531  oeoalem  6548  oaabslem  6595  oaabs2  6597
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-reu 2523  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-recs 6342  df-rdg 6377  df-oadd 6437
  Copyright terms: Public domain W3C validator