MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oalimcl Unicode version

Theorem oalimcl 6762
Description: The ordinal sum with a limit ordinal is a limit ordinal. Proposition 8.11 of [TakeutiZaring] p. 60. (Contributed by NM, 8-Dec-2004.)
Assertion
Ref Expression
oalimcl  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  Lim  ( A  +o  B ) )

Proof of Theorem oalimcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limelon 4604 . . 3  |-  ( ( B  e.  C  /\  Lim  B )  ->  B  e.  On )
2 oacl 6738 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  e.  On )
3 eloni 4551 . . . 4  |-  ( ( A  +o  B )  e.  On  ->  Ord  ( A  +o  B
) )
42, 3syl 16 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  Ord  ( A  +o  B ) )
51, 4sylan2 461 . 2  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  Ord  ( A  +o  B ) )
6 0ellim 4603 . . . . . 6  |-  ( Lim 
B  ->  (/)  e.  B
)
7 n0i 3593 . . . . . 6  |-  ( (/)  e.  B  ->  -.  B  =  (/) )
86, 7syl 16 . . . . 5  |-  ( Lim 
B  ->  -.  B  =  (/) )
98ad2antll 710 . . . 4  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  -.  B  =  (/) )
10 oa00 6761 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  +o  B )  =  (/)  <->  ( A  =  (/)  /\  B  =  (/) ) ) )
11 simpr 448 . . . . . . 7  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  B  =  (/) )
1210, 11syl6bi 220 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  +o  B )  =  (/)  ->  B  =  (/) ) )
1312con3d 127 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  B  =  (/)  ->  -.  ( A  +o  B )  =  (/) ) )
141, 13sylan2 461 . . . 4  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( -.  B  =  (/)  ->  -.  ( A  +o  B )  =  (/) ) )
159, 14mpd 15 . . 3  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  -.  ( A  +o  B )  =  (/) )
16 vex 2919 . . . . . . . . . . 11  |-  y  e. 
_V
1716sucid 4620 . . . . . . . . . 10  |-  y  e. 
suc  y
18 oalim 6735 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  +o  B )  =  U_ x  e.  B  ( A  +o  x ) )
19 eqeq1 2410 . . . . . . . . . . . 12  |-  ( ( A  +o  B )  =  suc  y  -> 
( ( A  +o  B )  =  U_ x  e.  B  ( A  +o  x )  <->  suc  y  = 
U_ x  e.  B  ( A  +o  x
) ) )
2018, 19syl5ib 211 . . . . . . . . . . 11  |-  ( ( A  +o  B )  =  suc  y  -> 
( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  suc  y  =  U_ x  e.  B  ( A  +o  x ) ) )
2120imp 419 . . . . . . . . . 10  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) ) )  ->  suc  y  = 
U_ x  e.  B  ( A  +o  x
) )
2217, 21syl5eleq 2490 . . . . . . . . 9  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) ) )  ->  y  e.  U_ x  e.  B  ( A  +o  x ) )
23 eliun 4057 . . . . . . . . 9  |-  ( y  e.  U_ x  e.  B  ( A  +o  x )  <->  E. x  e.  B  y  e.  ( A  +o  x
) )
2422, 23sylib 189 . . . . . . . 8  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) ) )  ->  E. x  e.  B  y  e.  ( A  +o  x
) )
25 onelon 4566 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  On  /\  x  e.  B )  ->  x  e.  On )
261, 25sylan 458 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  x  e.  On )
27 onnbtwn 4632 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  On  ->  -.  ( x  e.  B  /\  B  e.  suc  x ) )
28 imnan 412 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  B  ->  -.  B  e.  suc  x )  <->  -.  (
x  e.  B  /\  B  e.  suc  x ) )
2927, 28sylibr 204 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  On  ->  (
x  e.  B  ->  -.  B  e.  suc  x ) )
3029com12 29 . . . . . . . . . . . . . . . 16  |-  ( x  e.  B  ->  (
x  e.  On  ->  -.  B  e.  suc  x
) )
3130adantl 453 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  ( x  e.  On  ->  -.  B  e.  suc  x ) )
3226, 31mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  -.  B  e.  suc  x )
3332ad2antrl 709 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  /\  y  e.  ( A  +o  x
) ) )  ->  -.  B  e.  suc  x )
34 oacl 6738 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  +o  x
)  e.  On )
35 eloni 4551 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  +o  x )  e.  On  ->  Ord  ( A  +o  x
) )
36 ordsucelsuc 4761 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Ord  ( A  +o  x
)  ->  ( y  e.  ( A  +o  x
)  <->  suc  y  e.  suc  ( A  +o  x
) ) )
3734, 35, 363syl 19 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( y  e.  ( A  +o  x )  <->  suc  y  e.  suc  ( A  +o  x
) ) )
38 oasuc 6727 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  +o  suc  x )  =  suc  ( A  +o  x
) )
3938eleq2d 2471 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( suc  y  e.  ( A  +o  suc  x )  <->  suc  y  e. 
suc  ( A  +o  x ) ) )
4037, 39bitr4d 248 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( y  e.  ( A  +o  x )  <->  suc  y  e.  ( A  +o  suc  x ) ) )
4126, 40sylan2 461 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  On  /\  ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B ) )  -> 
( y  e.  ( A  +o  x )  <->  suc  y  e.  ( A  +o  suc  x ) ) )
42 eleq1 2464 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  +o  B )  =  suc  y  -> 
( ( A  +o  B )  e.  ( A  +o  suc  x
)  <->  suc  y  e.  ( A  +o  suc  x
) ) )
4342bicomd 193 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  +o  B )  =  suc  y  -> 
( suc  y  e.  ( A  +o  suc  x
)  <->  ( A  +o  B )  e.  ( A  +o  suc  x
) ) )
4441, 43sylan9bbr 682 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B ) ) )  ->  ( y  e.  ( A  +o  x
)  <->  ( A  +o  B )  e.  ( A  +o  suc  x
) ) )
451adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  B  e.  On )
46 sucelon 4756 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  On  <->  suc  x  e.  On )
4726, 46sylib 189 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  suc  x  e.  On )
4845, 47jca 519 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  ( B  e.  On  /\ 
suc  x  e.  On ) )
49 oaord 6749 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( B  e.  On  /\  suc  x  e.  On  /\  A  e.  On )  ->  ( B  e.  suc  x 
<->  ( A  +o  B
)  e.  ( A  +o  suc  x ) ) )
50493expa 1153 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( B  e.  On  /\ 
suc  x  e.  On )  /\  A  e.  On )  ->  ( B  e. 
suc  x  <->  ( A  +o  B )  e.  ( A  +o  suc  x
) ) )
5148, 50sylan 458 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B )  /\  A  e.  On )  ->  ( B  e.  suc  x  <->  ( A  +o  B )  e.  ( A  +o  suc  x
) ) )
5251ancoms 440 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  On  /\  ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B ) )  -> 
( B  e.  suc  x 
<->  ( A  +o  B
)  e.  ( A  +o  suc  x ) ) )
5352adantl 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B ) ) )  ->  ( B  e. 
suc  x  <->  ( A  +o  B )  e.  ( A  +o  suc  x
) ) )
5444, 53bitr4d 248 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B ) ) )  ->  ( y  e.  ( A  +o  x
)  <->  B  e.  suc  x ) )
5554biimpd 199 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B ) ) )  ->  ( y  e.  ( A  +o  x
)  ->  B  e.  suc  x ) )
5655exp32 589 . . . . . . . . . . . . . . 15  |-  ( ( A  +o  B )  =  suc  y  -> 
( A  e.  On  ->  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  (
y  e.  ( A  +o  x )  ->  B  e.  suc  x ) ) ) )
5756com4l 80 . . . . . . . . . . . . . 14  |-  ( A  e.  On  ->  (
( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B )  ->  (
y  e.  ( A  +o  x )  -> 
( ( A  +o  B )  =  suc  y  ->  B  e.  suc  x ) ) ) )
5857imp32 423 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  /\  y  e.  ( A  +o  x
) ) )  -> 
( ( A  +o  B )  =  suc  y  ->  B  e.  suc  x ) )
5933, 58mtod 170 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  /\  y  e.  ( A  +o  x
) ) )  ->  -.  ( A  +o  B
)  =  suc  y
)
6059exp44 597 . . . . . . . . . . 11  |-  ( A  e.  On  ->  (
( B  e.  C  /\  Lim  B )  -> 
( x  e.  B  ->  ( y  e.  ( A  +o  x )  ->  -.  ( A  +o  B )  =  suc  y ) ) ) )
6160imp 419 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( x  e.  B  ->  ( y  e.  ( A  +o  x
)  ->  -.  ( A  +o  B )  =  suc  y ) ) )
6261rexlimdv 2789 . . . . . . . . 9  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( E. x  e.  B  y  e.  ( A  +o  x
)  ->  -.  ( A  +o  B )  =  suc  y ) )
6362adantl 453 . . . . . . . 8  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) ) )  ->  ( E. x  e.  B  y  e.  ( A  +o  x
)  ->  -.  ( A  +o  B )  =  suc  y ) )
6424, 63mpd 15 . . . . . . 7  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) ) )  ->  -.  ( A  +o  B )  =  suc  y )
6564expcom 425 . . . . . 6  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( ( A  +o  B )  =  suc  y  ->  -.  ( A  +o  B
)  =  suc  y
) )
6665pm2.01d 163 . . . . 5  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  -.  ( A  +o  B )  =  suc  y )
6766adantr 452 . . . 4  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  y  e.  On )  ->  -.  ( A  +o  B )  =  suc  y )
6867nrexdv 2769 . . 3  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  -.  E. y  e.  On  ( A  +o  B )  =  suc  y )
69 ioran 477 . . 3  |-  ( -.  ( ( A  +o  B )  =  (/)  \/ 
E. y  e.  On  ( A  +o  B
)  =  suc  y
)  <->  ( -.  ( A  +o  B )  =  (/)  /\  -.  E. y  e.  On  ( A  +o  B )  =  suc  y ) )
7015, 68, 69sylanbrc 646 . 2  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  -.  ( ( A  +o  B )  =  (/)  \/  E. y  e.  On  ( A  +o  B )  =  suc  y ) )
71 dflim3 4786 . 2  |-  ( Lim  ( A  +o  B
)  <->  ( Ord  ( A  +o  B )  /\  -.  ( ( A  +o  B )  =  (/)  \/ 
E. y  e.  On  ( A  +o  B
)  =  suc  y
) ) )
725, 70, 71sylanbrc 646 1  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  Lim  ( A  +o  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721   E.wrex 2667   (/)c0 3588   U_ciun 4053   Ord word 4540   Oncon0 4541   Lim wlim 4542   suc csuc 4543  (class class class)co 6040    +o coa 6680
This theorem is referenced by:  oaass  6763  odi  6781  wunex3  8572
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-recs 6592  df-rdg 6627  df-oadd 6687
  Copyright terms: Public domain W3C validator