MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oancom Structured version   Unicode version

Theorem oancom 7598
Description: Ordinal addition is not commutative. This theorem shows a counterexample. Remark in [TakeutiZaring] p. 60. (Contributed by NM, 10-Dec-2004.)
Assertion
Ref Expression
oancom  |-  ( 1o 
+o  om )  =/=  ( om  +o  1o )

Proof of Theorem oancom
StepHypRef Expression
1 omex 7590 . . . 4  |-  om  e.  _V
21sucid 4652 . . 3  |-  om  e.  suc  om
3 omelon 7593 . . . 4  |-  om  e.  On
4 1onn 6874 . . . 4  |-  1o  e.  om
5 oaabslem 6878 . . . 4  |-  ( ( om  e.  On  /\  1o  e.  om )  -> 
( 1o  +o  om )  =  om )
63, 4, 5mp2an 654 . . 3  |-  ( 1o 
+o  om )  =  om
7 oa1suc 6767 . . . 4  |-  ( om  e.  On  ->  ( om  +o  1o )  =  suc  om )
83, 7ax-mp 8 . . 3  |-  ( om 
+o  1o )  =  suc  om
92, 6, 83eltr4i 2514 . 2  |-  ( 1o 
+o  om )  e.  ( om  +o  1o )
10 1on 6723 . . . . 5  |-  1o  e.  On
11 oacl 6771 . . . . 5  |-  ( ( 1o  e.  On  /\  om  e.  On )  -> 
( 1o  +o  om )  e.  On )
1210, 3, 11mp2an 654 . . . 4  |-  ( 1o 
+o  om )  e.  On
13 oacl 6771 . . . . 5  |-  ( ( om  e.  On  /\  1o  e.  On )  -> 
( om  +o  1o )  e.  On )
143, 10, 13mp2an 654 . . . 4  |-  ( om 
+o  1o )  e.  On
15 onelpss 4613 . . . 4  |-  ( ( ( 1o  +o  om )  e.  On  /\  ( om  +o  1o )  e.  On )  ->  (
( 1o  +o  om )  e.  ( om  +o  1o )  <->  ( ( 1o  +o  om )  C_  ( om  +o  1o )  /\  ( 1o  +o  om )  =/=  ( om 
+o  1o ) ) ) )
1612, 14, 15mp2an 654 . . 3  |-  ( ( 1o  +o  om )  e.  ( om  +o  1o ) 
<->  ( ( 1o  +o  om )  C_  ( om  +o  1o )  /\  ( 1o  +o  om )  =/=  ( om  +o  1o ) ) )
1716simprbi 451 . 2  |-  ( ( 1o  +o  om )  e.  ( om  +o  1o )  ->  ( 1o  +o  om )  =/=  ( om 
+o  1o ) )
189, 17ax-mp 8 1  |-  ( 1o 
+o  om )  =/=  ( om  +o  1o )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598    C_ wss 3312   Oncon0 4573   suc csuc 4575   omcom 4837  (class class class)co 6073   1oc1o 6709    +o coa 6713
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720
  Copyright terms: Public domain W3C validator