MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaord Unicode version

Theorem oaord 6431
Description: Ordering property of ordinal addition. Proposition 8.4 of [TakeutiZaring] p. 58 and its converse. (Contributed by NM, 5-Dec-2004.)
Assertion
Ref Expression
oaord  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  <->  ( C  +o  A )  e.  ( C  +o  B ) ) )

Proof of Theorem oaord
StepHypRef Expression
1 oaordi 6430 . . 3  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )
213adant1 978 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( C  +o  A )  e.  ( C  +o  B ) ) )
3 oveq2 5718 . . . . . 6  |-  ( A  =  B  ->  ( C  +o  A )  =  ( C  +o  B
) )
43a1i 12 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  =  B  ->  ( C  +o  A )  =  ( C  +o  B ) ) )
5 oaordi 6430 . . . . . 6  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( B  e.  A  ->  ( C  +o  B
)  e.  ( C  +o  A ) ) )
653adant2 979 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( B  e.  A  ->  ( C  +o  B )  e.  ( C  +o  A ) ) )
74, 6orim12d 814 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  =  B  \/  B  e.  A
)  ->  ( ( C  +o  A )  =  ( C  +o  B
)  \/  ( C  +o  B )  e.  ( C  +o  A
) ) ) )
87con3d 127 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( -.  ( ( C  +o  A )  =  ( C  +o  B )  \/  ( C  +o  B )  e.  ( C  +o  A ) )  ->  -.  ( A  =  B  \/  B  e.  A )
) )
9 df-3an 941 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  <->  ( ( A  e.  On  /\  B  e.  On )  /\  C  e.  On ) )
10 ancom 439 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  C  e.  On ) 
<->  ( C  e.  On  /\  ( A  e.  On  /\  B  e.  On ) ) )
11 anandi 804 . . . . . 6  |-  ( ( C  e.  On  /\  ( A  e.  On  /\  B  e.  On ) )  <->  ( ( C  e.  On  /\  A  e.  On )  /\  ( C  e.  On  /\  B  e.  On ) ) )
129, 10, 113bitri 264 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  <->  ( ( C  e.  On  /\  A  e.  On )  /\  ( C  e.  On  /\  B  e.  On ) ) )
13 oacl 6420 . . . . . . 7  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  +o  A
)  e.  On )
14 eloni 4295 . . . . . . 7  |-  ( ( C  +o  A )  e.  On  ->  Ord  ( C  +o  A
) )
1513, 14syl 17 . . . . . 6  |-  ( ( C  e.  On  /\  A  e.  On )  ->  Ord  ( C  +o  A ) )
16 oacl 6420 . . . . . . 7  |-  ( ( C  e.  On  /\  B  e.  On )  ->  ( C  +o  B
)  e.  On )
17 eloni 4295 . . . . . . 7  |-  ( ( C  +o  B )  e.  On  ->  Ord  ( C  +o  B
) )
1816, 17syl 17 . . . . . 6  |-  ( ( C  e.  On  /\  B  e.  On )  ->  Ord  ( C  +o  B ) )
1915, 18anim12i 551 . . . . 5  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  ( C  e.  On  /\  B  e.  On ) )  -> 
( Ord  ( C  +o  A )  /\  Ord  ( C  +o  B
) ) )
2012, 19sylbi 189 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( Ord  ( C  +o  A
)  /\  Ord  ( C  +o  B ) ) )
21 ordtri2 4320 . . . 4  |-  ( ( Ord  ( C  +o  A )  /\  Ord  ( C  +o  B
) )  ->  (
( C  +o  A
)  e.  ( C  +o  B )  <->  -.  (
( C  +o  A
)  =  ( C  +o  B )  \/  ( C  +o  B
)  e.  ( C  +o  A ) ) ) )
2220, 21syl 17 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( C  +o  A
)  e.  ( C  +o  B )  <->  -.  (
( C  +o  A
)  =  ( C  +o  B )  \/  ( C  +o  B
)  e.  ( C  +o  A ) ) ) )
23 eloni 4295 . . . . . 6  |-  ( A  e.  On  ->  Ord  A )
24 eloni 4295 . . . . . 6  |-  ( B  e.  On  ->  Ord  B )
2523, 24anim12i 551 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( Ord  A  /\  Ord  B ) )
26253adant3 980 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( Ord  A  /\  Ord  B
) )
27 ordtri2 4320 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A ) ) )
2826, 27syl 17 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A )
) )
298, 22, 283imtr4d 261 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( C  +o  A
)  e.  ( C  +o  B )  ->  A  e.  B )
)
302, 29impbid 185 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  <->  ( C  +o  A )  e.  ( C  +o  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   Ord word 4284   Oncon0 4285  (class class class)co 5710    +o coa 6362
This theorem is referenced by:  oacan  6432  oaword  6433  oaord1  6435  oa00  6443  oalimcl  6444  oaass  6445  odi  6463  oneo  6465  omeulem1  6466  omeulem2  6467  oeeui  6486  omxpenlem  6848  cantnflt  7257  cantnflem1d  7274  cantnflem1  7275
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-recs 6274  df-rdg 6309  df-oadd 6369
  Copyright terms: Public domain W3C validator