MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oasuc Unicode version

Theorem oasuc 6519
Description: Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oasuc  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  suc  ( A  +o  B ) )
Dummy variable  x is distinct from all other variables.

Proof of Theorem oasuc
StepHypRef Expression
1 rdgsuc 6433 . . 3  |-  ( B  e.  On  ->  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  suc  B )  =  ( ( x  e.  _V  |->  suc  x ) `  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  B
) ) )
21adantl 454 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e.  _V  |->  suc  x ) ,  A
) `  suc  B )  =  ( ( x  e.  _V  |->  suc  x
) `  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  B
) ) )
3 suceloni 4604 . . 3  |-  ( B  e.  On  ->  suc  B  e.  On )
4 oav 6506 . . 3  |-  ( ( A  e.  On  /\  suc  B  e.  On )  ->  ( A  +o  suc  B )  =  ( rec ( ( x  e.  _V  |->  suc  x
) ,  A ) `
 suc  B )
)
53, 4sylan2 462 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  suc  B ) )
6 ovex 5845 . . . 4  |-  ( A  +o  B )  e. 
_V
7 suceq 4457 . . . . 5  |-  ( x  =  ( A  +o  B )  ->  suc  x  =  suc  ( A  +o  B ) )
8 eqid 2285 . . . . 5  |-  ( x  e.  _V  |->  suc  x
)  =  ( x  e.  _V  |->  suc  x
)
96sucex 4602 . . . . 5  |-  suc  ( A  +o  B )  e. 
_V
107, 8, 9fvmpt 5564 . . . 4  |-  ( ( A  +o  B )  e.  _V  ->  (
( x  e.  _V  |->  suc  x ) `  ( A  +o  B ) )  =  suc  ( A  +o  B ) )
116, 10ax-mp 10 . . 3  |-  ( ( x  e.  _V  |->  suc  x ) `  ( A  +o  B ) )  =  suc  ( A  +o  B )
12 oav 6506 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  B
) )
1312fveq2d 5490 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( x  e. 
_V  |->  suc  x ) `  ( A  +o  B
) )  =  ( ( x  e.  _V  |->  suc  x ) `  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  B
) ) )
1411, 13syl5eqr 2331 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  suc  ( A  +o  B )  =  ( ( x  e.  _V  |->  suc  x ) `  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  B
) ) )
152, 5, 143eqtr4d 2327 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  suc  ( A  +o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685   _Vcvv 2790    e. cmpt 4079   Oncon0 4392   suc csuc 4394   ` cfv 5222  (class class class)co 5820   reccrdg 6418    +o coa 6472
This theorem is referenced by:  oacl  6530  oa0r  6533  oaordi  6540  oawordri  6544  oawordeulem  6548  oalimcl  6554  oaass  6555  oarec  6556  odi  6573  oeoalem  6590
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-recs 6384  df-rdg 6419  df-oadd 6479
  Copyright terms: Public domain W3C validator