MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaword2 Unicode version

Theorem oaword2 6567
Description: An ordinal is less than or equal to its sum with another. Theorem 21 of [Suppes] p. 209. (Contributed by NM, 7-Dec-2004.)
Assertion
Ref Expression
oaword2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  A  C_  ( B  +o  A ) )

Proof of Theorem oaword2
StepHypRef Expression
1 0ss 3496 . . 3  |-  (/)  C_  B
2 0elon 4461 . . . . 5  |-  (/)  e.  On
3 oawordri 6564 . . . . 5  |-  ( (
(/)  e.  On  /\  B  e.  On  /\  A  e.  On )  ->  ( (/)  C_  B  ->  ( (/)  +o  A )  C_  ( B  +o  A ) ) )
42, 3mp3an1 1264 . . . 4  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( (/)  C_  B  -> 
( (/)  +o  A ) 
C_  ( B  +o  A ) ) )
5 oa0r 6553 . . . . . 6  |-  ( A  e.  On  ->  ( (/) 
+o  A )  =  A )
65adantl 452 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( (/)  +o  A
)  =  A )
76sseq1d 3218 . . . 4  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( ( (/)  +o  A
)  C_  ( B  +o  A )  <->  A  C_  ( B  +o  A ) ) )
84, 7sylibd 205 . . 3  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( (/)  C_  B  ->  A  C_  ( B  +o  A ) ) )
91, 8mpi 16 . 2  |-  ( ( B  e.  On  /\  A  e.  On )  ->  A  C_  ( B  +o  A ) )
109ancoms 439 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  A  C_  ( B  +o  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    C_ wss 3165   (/)c0 3468   Oncon0 4408  (class class class)co 5874    +o coa 6492
This theorem is referenced by:  oawordeulem  6568  nnarcl  6630  oaabslem  6657  oaabs2  6659  cantnfle  7388
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-recs 6404  df-rdg 6439  df-oadd 6499
  Copyright terms: Public domain W3C validator