HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocin Unicode version

Theorem ocin 21869
Description: Intersection of a Hilbert subspace and its complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ocin  |-  ( A  e.  SH  ->  ( A  i^i  ( _|_ `  A
) )  =  0H )
Dummy variables  x  y are mutually distinct and distinct from all other variables.

Proof of Theorem ocin
StepHypRef Expression
1 shocel 21855 . . . . . . 7  |-  ( A  e.  SH  ->  (
x  e.  ( _|_ `  A )  <->  ( x  e.  ~H  /\  A. y  e.  A  ( x  .ih  y )  =  0 ) ) )
2 oveq2 5829 . . . . . . . . . 10  |-  ( y  =  x  ->  (
x  .ih  y )  =  ( x  .ih  x ) )
32eqeq1d 2294 . . . . . . . . 9  |-  ( y  =  x  ->  (
( x  .ih  y
)  =  0  <->  (
x  .ih  x )  =  0 ) )
43rspccv 2884 . . . . . . . 8  |-  ( A. y  e.  A  (
x  .ih  y )  =  0  ->  (
x  e.  A  -> 
( x  .ih  x
)  =  0 ) )
5 his6 21672 . . . . . . . . 9  |-  ( x  e.  ~H  ->  (
( x  .ih  x
)  =  0  <->  x  =  0h ) )
65biimpd 200 . . . . . . . 8  |-  ( x  e.  ~H  ->  (
( x  .ih  x
)  =  0  ->  x  =  0h )
)
74, 6sylan9r 641 . . . . . . 7  |-  ( ( x  e.  ~H  /\  A. y  e.  A  ( x  .ih  y )  =  0 )  -> 
( x  e.  A  ->  x  =  0h )
)
81, 7syl6bi 221 . . . . . 6  |-  ( A  e.  SH  ->  (
x  e.  ( _|_ `  A )  ->  (
x  e.  A  ->  x  =  0h )
) )
98com23 74 . . . . 5  |-  ( A  e.  SH  ->  (
x  e.  A  -> 
( x  e.  ( _|_ `  A )  ->  x  =  0h ) ) )
109imp3a 422 . . . 4  |-  ( A  e.  SH  ->  (
( x  e.  A  /\  x  e.  ( _|_ `  A ) )  ->  x  =  0h ) )
11 sh0 21789 . . . . . 6  |-  ( A  e.  SH  ->  0h  e.  A )
12 oc0 21863 . . . . . 6  |-  ( A  e.  SH  ->  0h  e.  ( _|_ `  A
) )
1311, 12jca 520 . . . . 5  |-  ( A  e.  SH  ->  ( 0h  e.  A  /\  0h  e.  ( _|_ `  A
) ) )
14 eleq1 2346 . . . . . 6  |-  ( x  =  0h  ->  (
x  e.  A  <->  0h  e.  A ) )
15 eleq1 2346 . . . . . 6  |-  ( x  =  0h  ->  (
x  e.  ( _|_ `  A )  <->  0h  e.  ( _|_ `  A ) ) )
1614, 15anbi12d 693 . . . . 5  |-  ( x  =  0h  ->  (
( x  e.  A  /\  x  e.  ( _|_ `  A ) )  <-> 
( 0h  e.  A  /\  0h  e.  ( _|_ `  A ) ) ) )
1713, 16syl5ibrcom 215 . . . 4  |-  ( A  e.  SH  ->  (
x  =  0h  ->  ( x  e.  A  /\  x  e.  ( _|_ `  A ) ) ) )
1810, 17impbid 185 . . 3  |-  ( A  e.  SH  ->  (
( x  e.  A  /\  x  e.  ( _|_ `  A ) )  <-> 
x  =  0h )
)
19 elin 3361 . . 3  |-  ( x  e.  ( A  i^i  ( _|_ `  A ) )  <->  ( x  e.  A  /\  x  e.  ( _|_ `  A
) ) )
20 elch0 21827 . . 3  |-  ( x  e.  0H  <->  x  =  0h )
2118, 19, 203bitr4g 281 . 2  |-  ( A  e.  SH  ->  (
x  e.  ( A  i^i  ( _|_ `  A
) )  <->  x  e.  0H ) )
2221eqrdv 2284 1  |-  ( A  e.  SH  ->  ( A  i^i  ( _|_ `  A
) )  =  0H )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1625    e. wcel 1687   A.wral 2546    i^i cin 3154   ` cfv 5223  (class class class)co 5821   0cc0 8734   ~Hchil 21493    .ih csp 21496   0hc0v 21498   SHcsh 21502   _|_cort 21504   0Hc0h 21509
This theorem is referenced by:  ocnel  21871  chocunii  21874  pjhtheu  21967  pjpreeq  21971  omlsi  21977  ococi  21978  pjoc1i  22004  orthin  22019  ssjo  22020  chocini  22027  chscllem3  22212
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-13 1689  ax-14 1691  ax-6 1706  ax-7 1711  ax-11 1718  ax-12 1870  ax-ext 2267  ax-sep 4144  ax-nul 4152  ax-pow 4189  ax-pr 4215  ax-un 4513  ax-resscn 8791  ax-1cn 8792  ax-icn 8793  ax-addcl 8794  ax-addrcl 8795  ax-mulcl 8796  ax-mulrcl 8797  ax-mulcom 8798  ax-addass 8799  ax-mulass 8800  ax-distr 8801  ax-i2m1 8802  ax-1ne0 8803  ax-1rid 8804  ax-rnegex 8805  ax-rrecex 8806  ax-cnre 8807  ax-pre-lttri 8808  ax-pre-lttrn 8809  ax-pre-ltadd 8810  ax-hilex 21573  ax-hfvadd 21574  ax-hv0cl 21577  ax-hfvmul 21579  ax-hvmul0 21584  ax-hfi 21652  ax-his2 21656  ax-his3 21657  ax-his4 21658
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1531  df-nf 1534  df-sb 1633  df-eu 2150  df-mo 2151  df-clab 2273  df-cleq 2279  df-clel 2282  df-nfc 2411  df-ne 2451  df-nel 2452  df-ral 2551  df-rex 2552  df-rab 2555  df-v 2793  df-sbc 2995  df-csb 3085  df-dif 3158  df-un 3160  df-in 3162  df-ss 3169  df-nul 3459  df-if 3569  df-pw 3630  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3831  df-iun 3910  df-br 4027  df-opab 4081  df-mpt 4082  df-id 4310  df-po 4315  df-so 4316  df-xp 4696  df-rel 4697  df-cnv 4698  df-co 4699  df-dm 4700  df-rn 4701  df-res 4702  df-ima 4703  df-fun 5225  df-fn 5226  df-f 5227  df-f1 5228  df-fo 5229  df-f1o 5230  df-fv 5231  df-ov 5824  df-er 6657  df-en 6861  df-dom 6862  df-sdom 6863  df-pnf 8866  df-mnf 8867  df-ltxr 8869  df-sh 21780  df-oc 21825  df-ch0 21826
  Copyright terms: Public domain W3C validator