HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ococ Unicode version

Theorem ococ 21945
Description: Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of [Beran] p. 102. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ococ  |-  ( A  e.  CH  ->  ( _|_ `  ( _|_ `  A
) )  =  A )

Proof of Theorem ococ
StepHypRef Expression
1 fveq2 5458 . . . 4  |-  ( A  =  if ( A  e.  CH ,  A ,  ~H )  ->  ( _|_ `  A )  =  ( _|_ `  if ( A  e.  CH ,  A ,  ~H )
) )
21fveq2d 5462 . . 3  |-  ( A  =  if ( A  e.  CH ,  A ,  ~H )  ->  ( _|_ `  ( _|_ `  A
) )  =  ( _|_ `  ( _|_ `  if ( A  e. 
CH ,  A ,  ~H ) ) ) )
3 id 21 . . 3  |-  ( A  =  if ( A  e.  CH ,  A ,  ~H )  ->  A  =  if ( A  e. 
CH ,  A ,  ~H ) )
42, 3eqeq12d 2272 . 2  |-  ( A  =  if ( A  e.  CH ,  A ,  ~H )  ->  (
( _|_ `  ( _|_ `  A ) )  =  A  <->  ( _|_ `  ( _|_ `  if ( A  e.  CH ,  A ,  ~H )
) )  =  if ( A  e.  CH ,  A ,  ~H )
) )
5 helch 21783 . . . 4  |-  ~H  e.  CH
65elimel 3591 . . 3  |-  if ( A  e.  CH ,  A ,  ~H )  e.  CH
76ococi 21944 . 2  |-  ( _|_ `  ( _|_ `  if ( A  e.  CH ,  A ,  ~H )
) )  =  if ( A  e.  CH ,  A ,  ~H )
84, 7dedth 3580 1  |-  ( A  e.  CH  ->  ( _|_ `  ( _|_ `  A
) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621   ifcif 3539   ` cfv 4673   ~Hchil 21459   CHcch 21469   _|_cort 21470
This theorem is referenced by:  dfch2  21946  ococin  21947  shlub  21953  pjhtheu2  21955  shjshseli  22032  chsscon1  22040  chpsscon1  22043  chpsscon2  22044  chdmm2  22065  chdmm3  22066  chdmm4  22067  chdmj1  22068  chdmj2  22069  chdmj3  22070  chdmj4  22071  fh2  22158  hstle  22770  hstoh  22772  mddmd  22841
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cc 8029  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785  ax-hilex 21539  ax-hfvadd 21540  ax-hvcom 21541  ax-hvass 21542  ax-hv0cl 21543  ax-hvaddid 21544  ax-hfvmul 21545  ax-hvmulid 21546  ax-hvmulass 21547  ax-hvdistr1 21548  ax-hvdistr2 21549  ax-hvmul0 21550  ax-hfi 21618  ax-his1 21621  ax-his2 21622  ax-his3 21623  ax-his4 21624  ax-hcompl 21741
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-oadd 6451  df-omul 6452  df-er 6628  df-map 6742  df-pm 6743  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-acn 7543  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-n0 9933  df-z 9992  df-uz 10198  df-q 10284  df-rp 10322  df-xneg 10419  df-xadd 10420  df-xmul 10421  df-ico 10628  df-icc 10629  df-fz 10749  df-fl 10891  df-seq 11013  df-exp 11071  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-clim 11927  df-rlim 11928  df-rest 13289  df-topgen 13306  df-xmet 16335  df-met 16336  df-bl 16337  df-mopn 16338  df-top 16598  df-bases 16600  df-topon 16601  df-cld 16718  df-ntr 16719  df-cls 16720  df-nei 16797  df-lm 16921  df-haus 17005  df-fbas 17482  df-fg 17483  df-fil 17503  df-fm 17595  df-flim 17596  df-flf 17597  df-cfil 18643  df-cau 18644  df-cmet 18645  df-grpo 20818  df-gid 20819  df-ginv 20820  df-gdiv 20821  df-ablo 20909  df-subgo 20929  df-vc 21062  df-nv 21108  df-va 21111  df-ba 21112  df-sm 21113  df-0v 21114  df-vs 21115  df-nmcv 21116  df-ims 21117  df-ssp 21258  df-ph 21351  df-cbn 21402  df-hnorm 21508  df-hba 21509  df-hvsub 21511  df-hlim 21512  df-hcau 21513  df-sh 21746  df-ch 21761  df-oc 21791  df-ch0 21792
  Copyright terms: Public domain W3C validator