HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocsh Unicode version

Theorem ocsh 22738
Description: The orthogonal complement of a subspace is a subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
ocsh  |-  ( A 
C_  ~H  ->  ( _|_ `  A )  e.  SH )

Proof of Theorem ocsh
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocval 22735 . . . 4  |-  ( A 
C_  ~H  ->  ( _|_ `  A )  =  {
x  e.  ~H  |  A. y  e.  A  ( x  .ih  y )  =  0 } )
2 ssrab2 3388 . . . 4  |-  { x  e.  ~H  |  A. y  e.  A  ( x  .ih  y )  =  0 }  C_  ~H
31, 2syl6eqss 3358 . . 3  |-  ( A 
C_  ~H  ->  ( _|_ `  A )  C_  ~H )
4 ssel 3302 . . . . . . 7  |-  ( A 
C_  ~H  ->  ( y  e.  A  ->  y  e.  ~H ) )
5 hi01 22551 . . . . . . 7  |-  ( y  e.  ~H  ->  ( 0h  .ih  y )  =  0 )
64, 5syl6 31 . . . . . 6  |-  ( A 
C_  ~H  ->  ( y  e.  A  ->  ( 0h  .ih  y )  =  0 ) )
76ralrimiv 2748 . . . . 5  |-  ( A 
C_  ~H  ->  A. y  e.  A  ( 0h  .ih  y )  =  0 )
8 ax-hv0cl 22459 . . . . 5  |-  0h  e.  ~H
97, 8jctil 524 . . . 4  |-  ( A 
C_  ~H  ->  ( 0h  e.  ~H  /\  A. y  e.  A  ( 0h  .ih  y )  =  0 ) )
10 ocel 22736 . . . 4  |-  ( A 
C_  ~H  ->  ( 0h  e.  ( _|_ `  A
)  <->  ( 0h  e.  ~H  /\  A. y  e.  A  ( 0h  .ih  y )  =  0 ) ) )
119, 10mpbird 224 . . 3  |-  ( A 
C_  ~H  ->  0h  e.  ( _|_ `  A ) )
123, 11jca 519 . 2  |-  ( A 
C_  ~H  ->  ( ( _|_ `  A ) 
C_  ~H  /\  0h  e.  ( _|_ `  A ) ) )
13 ssel2 3303 . . . . . . . . . 10  |-  ( ( A  C_  ~H  /\  z  e.  A )  ->  z  e.  ~H )
14 ax-his2 22538 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ~H  /\  y  e.  ~H  /\  z  e.  ~H )  ->  (
( x  +h  y
)  .ih  z )  =  ( ( x 
.ih  z )  +  ( y  .ih  z
) ) )
15143expa 1153 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  +h  y )  .ih  z )  =  ( ( x  .ih  z
)  +  ( y 
.ih  z ) ) )
16 oveq12 6049 . . . . . . . . . . . . . 14  |-  ( ( ( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 )  ->  ( ( x 
.ih  z )  +  ( y  .ih  z
) )  =  ( 0  +  0 ) )
17 00id 9197 . . . . . . . . . . . . . 14  |-  ( 0  +  0 )  =  0
1816, 17syl6eq 2452 . . . . . . . . . . . . 13  |-  ( ( ( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 )  ->  ( ( x 
.ih  z )  +  ( y  .ih  z
) )  =  0 )
1915, 18sylan9eq 2456 . . . . . . . . . . . 12  |-  ( ( ( ( x  e. 
~H  /\  y  e.  ~H )  /\  z  e.  ~H )  /\  (
( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 ) )  ->  ( (
x  +h  y ) 
.ih  z )  =  0 )
2019ex 424 . . . . . . . . . . 11  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( ( x  .ih  z )  =  0  /\  (
y  .ih  z )  =  0 )  -> 
( ( x  +h  y )  .ih  z
)  =  0 ) )
2120ancoms 440 . . . . . . . . . 10  |-  ( ( z  e.  ~H  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 )  ->  ( ( x  +h  y )  .ih  z )  =  0 ) )
2213, 21sylan 458 . . . . . . . . 9  |-  ( ( ( A  C_  ~H  /\  z  e.  A )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
( ( x  .ih  z )  =  0  /\  ( y  .ih  z )  =  0 )  ->  ( (
x  +h  y ) 
.ih  z )  =  0 ) )
2322an32s 780 . . . . . . . 8  |-  ( ( ( A  C_  ~H  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  /\  z  e.  A )  ->  (
( ( x  .ih  z )  =  0  /\  ( y  .ih  z )  =  0 )  ->  ( (
x  +h  y ) 
.ih  z )  =  0 ) )
2423ralimdva 2744 . . . . . . 7  |-  ( ( A  C_  ~H  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( A. z  e.  A  (
( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 )  ->  A. z  e.  A  ( ( x  +h  y )  .ih  z
)  =  0 ) )
2524imdistanda 675 . . . . . 6  |-  ( A 
C_  ~H  ->  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  .ih  z )  =  0  /\  ( y  .ih  z )  =  0 ) )  ->  (
( x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  +h  y )  .ih  z
)  =  0 ) ) )
26 hvaddcl 22468 . . . . . . 7  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  +h  y
)  e.  ~H )
2726anim1i 552 . . . . . 6  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  +h  y )  .ih  z
)  =  0 )  ->  ( ( x  +h  y )  e. 
~H  /\  A. z  e.  A  ( (
x  +h  y ) 
.ih  z )  =  0 ) )
2825, 27syl6 31 . . . . 5  |-  ( A 
C_  ~H  ->  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  .ih  z )  =  0  /\  ( y  .ih  z )  =  0 ) )  ->  (
( x  +h  y
)  e.  ~H  /\  A. z  e.  A  ( ( x  +h  y
)  .ih  z )  =  0 ) ) )
29 ocel 22736 . . . . . . 7  |-  ( A 
C_  ~H  ->  ( x  e.  ( _|_ `  A
)  <->  ( x  e. 
~H  /\  A. z  e.  A  ( x  .ih  z )  =  0 ) ) )
30 ocel 22736 . . . . . . 7  |-  ( A 
C_  ~H  ->  ( y  e.  ( _|_ `  A
)  <->  ( y  e. 
~H  /\  A. z  e.  A  ( y  .ih  z )  =  0 ) ) )
3129, 30anbi12d 692 . . . . . 6  |-  ( A 
C_  ~H  ->  ( ( x  e.  ( _|_ `  A )  /\  y  e.  ( _|_ `  A
) )  <->  ( (
x  e.  ~H  /\  A. z  e.  A  ( x  .ih  z )  =  0 )  /\  ( y  e.  ~H  /\ 
A. z  e.  A  ( y  .ih  z
)  =  0 ) ) ) )
32 an4 798 . . . . . . 7  |-  ( ( ( x  e.  ~H  /\ 
A. z  e.  A  ( x  .ih  z )  =  0 )  /\  ( y  e.  ~H  /\ 
A. z  e.  A  ( y  .ih  z
)  =  0 ) )  <->  ( ( x  e.  ~H  /\  y  e.  ~H )  /\  ( A. z  e.  A  ( x  .ih  z )  =  0  /\  A. z  e.  A  (
y  .ih  z )  =  0 ) ) )
33 r19.26 2798 . . . . . . . 8  |-  ( A. z  e.  A  (
( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 )  <-> 
( A. z  e.  A  ( x  .ih  z )  =  0  /\  A. z  e.  A  ( y  .ih  z )  =  0 ) )
3433anbi2i 676 . . . . . . 7  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  .ih  z )  =  0  /\  ( y  .ih  z )  =  0 ) )  <->  ( (
x  e.  ~H  /\  y  e.  ~H )  /\  ( A. z  e.  A  ( x  .ih  z )  =  0  /\  A. z  e.  A  ( y  .ih  z )  =  0 ) ) )
3532, 34bitr4i 244 . . . . . 6  |-  ( ( ( x  e.  ~H  /\ 
A. z  e.  A  ( x  .ih  z )  =  0 )  /\  ( y  e.  ~H  /\ 
A. z  e.  A  ( y  .ih  z
)  =  0 ) )  <->  ( ( x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  (
( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 ) ) )
3631, 35syl6bb 253 . . . . 5  |-  ( A 
C_  ~H  ->  ( ( x  e.  ( _|_ `  A )  /\  y  e.  ( _|_ `  A
) )  <->  ( (
x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  .ih  z )  =  0  /\  ( y  .ih  z )  =  0 ) ) ) )
37 ocel 22736 . . . . 5  |-  ( A 
C_  ~H  ->  ( ( x  +h  y )  e.  ( _|_ `  A
)  <->  ( ( x  +h  y )  e. 
~H  /\  A. z  e.  A  ( (
x  +h  y ) 
.ih  z )  =  0 ) ) )
3828, 36, 373imtr4d 260 . . . 4  |-  ( A 
C_  ~H  ->  ( ( x  e.  ( _|_ `  A )  /\  y  e.  ( _|_ `  A
) )  ->  (
x  +h  y )  e.  ( _|_ `  A
) ) )
3938ralrimivv 2757 . . 3  |-  ( A 
C_  ~H  ->  A. x  e.  ( _|_ `  A
) A. y  e.  ( _|_ `  A
) ( x  +h  y )  e.  ( _|_ `  A ) )
40 mul01 9201 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
x  x.  0 )  =  0 )
41 oveq2 6048 . . . . . . . . . . . . . 14  |-  ( ( y  .ih  z )  =  0  ->  (
x  x.  ( y 
.ih  z ) )  =  ( x  x.  0 ) )
4241eqeq1d 2412 . . . . . . . . . . . . 13  |-  ( ( y  .ih  z )  =  0  ->  (
( x  x.  (
y  .ih  z )
)  =  0  <->  (
x  x.  0 )  =  0 ) )
4340, 42syl5ibrcom 214 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
( y  .ih  z
)  =  0  -> 
( x  x.  (
y  .ih  z )
)  =  0 ) )
4443ad2antrl 709 . . . . . . . . . . 11  |-  ( ( z  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( (
y  .ih  z )  =  0  ->  (
x  x.  ( y 
.ih  z ) )  =  0 ) )
45 ax-his3 22539 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  y  e.  ~H  /\  z  e.  ~H )  ->  (
( x  .h  y
)  .ih  z )  =  ( x  x.  ( y  .ih  z
) ) )
4645eqeq1d 2412 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  y  e.  ~H  /\  z  e.  ~H )  ->  (
( ( x  .h  y )  .ih  z
)  =  0  <->  (
x  x.  ( y 
.ih  z ) )  =  0 ) )
47463expa 1153 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( ( x  .h  y ) 
.ih  z )  =  0  <->  ( x  x.  ( y  .ih  z
) )  =  0 ) )
4847ancoms 440 . . . . . . . . . . 11  |-  ( ( z  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( (
( x  .h  y
)  .ih  z )  =  0  <->  ( x  x.  ( y  .ih  z
) )  =  0 ) )
4944, 48sylibrd 226 . . . . . . . . . 10  |-  ( ( z  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( (
y  .ih  z )  =  0  ->  (
( x  .h  y
)  .ih  z )  =  0 ) )
5013, 49sylan 458 . . . . . . . . 9  |-  ( ( ( A  C_  ~H  /\  z  e.  A )  /\  ( x  e.  CC  /\  y  e. 
~H ) )  -> 
( ( y  .ih  z )  =  0  ->  ( ( x  .h  y )  .ih  z )  =  0 ) )
5150an32s 780 . . . . . . . 8  |-  ( ( ( A  C_  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  z  e.  A )  ->  (
( y  .ih  z
)  =  0  -> 
( ( x  .h  y )  .ih  z
)  =  0 ) )
5251ralimdva 2744 . . . . . . 7  |-  ( ( A  C_  ~H  /\  (
x  e.  CC  /\  y  e.  ~H )
)  ->  ( A. z  e.  A  (
y  .ih  z )  =  0  ->  A. z  e.  A  ( (
x  .h  y ) 
.ih  z )  =  0 ) )
5352imdistanda 675 . . . . . 6  |-  ( A 
C_  ~H  ->  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  A. z  e.  A  ( y  .ih  z
)  =  0 )  ->  ( ( x  e.  CC  /\  y  e.  ~H )  /\  A. z  e.  A  (
( x  .h  y
)  .ih  z )  =  0 ) ) )
54 hvmulcl 22469 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  y
)  e.  ~H )
5554anim1i 552 . . . . . 6  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  .h  y )  .ih  z
)  =  0 )  ->  ( ( x  .h  y )  e. 
~H  /\  A. z  e.  A  ( (
x  .h  y ) 
.ih  z )  =  0 ) )
5653, 55syl6 31 . . . . 5  |-  ( A 
C_  ~H  ->  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  A. z  e.  A  ( y  .ih  z
)  =  0 )  ->  ( ( x  .h  y )  e. 
~H  /\  A. z  e.  A  ( (
x  .h  y ) 
.ih  z )  =  0 ) ) )
5730anbi2d 685 . . . . . 6  |-  ( A 
C_  ~H  ->  ( ( x  e.  CC  /\  y  e.  ( _|_ `  A ) )  <->  ( x  e.  CC  /\  ( y  e.  ~H  /\  A. z  e.  A  (
y  .ih  z )  =  0 ) ) ) )
58 anass 631 . . . . . 6  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  A. z  e.  A  ( y  .ih  z
)  =  0 )  <-> 
( x  e.  CC  /\  ( y  e.  ~H  /\ 
A. z  e.  A  ( y  .ih  z
)  =  0 ) ) )
5957, 58syl6bbr 255 . . . . 5  |-  ( A 
C_  ~H  ->  ( ( x  e.  CC  /\  y  e.  ( _|_ `  A ) )  <->  ( (
x  e.  CC  /\  y  e.  ~H )  /\  A. z  e.  A  ( y  .ih  z
)  =  0 ) ) )
60 ocel 22736 . . . . 5  |-  ( A 
C_  ~H  ->  ( ( x  .h  y )  e.  ( _|_ `  A
)  <->  ( ( x  .h  y )  e. 
~H  /\  A. z  e.  A  ( (
x  .h  y ) 
.ih  z )  =  0 ) ) )
6156, 59, 603imtr4d 260 . . . 4  |-  ( A 
C_  ~H  ->  ( ( x  e.  CC  /\  y  e.  ( _|_ `  A ) )  -> 
( x  .h  y
)  e.  ( _|_ `  A ) ) )
6261ralrimivv 2757 . . 3  |-  ( A 
C_  ~H  ->  A. x  e.  CC  A. y  e.  ( _|_ `  A
) ( x  .h  y )  e.  ( _|_ `  A ) )
6339, 62jca 519 . 2  |-  ( A 
C_  ~H  ->  ( A. x  e.  ( _|_ `  A ) A. y  e.  ( _|_ `  A
) ( x  +h  y )  e.  ( _|_ `  A )  /\  A. x  e.  CC  A. y  e.  ( _|_ `  A
) ( x  .h  y )  e.  ( _|_ `  A ) ) )
64 issh2 22664 . 2  |-  ( ( _|_ `  A )  e.  SH  <->  ( (
( _|_ `  A
)  C_  ~H  /\  0h  e.  ( _|_ `  A
) )  /\  ( A. x  e.  ( _|_ `  A ) A. y  e.  ( _|_ `  A ) ( x  +h  y )  e.  ( _|_ `  A
)  /\  A. x  e.  CC  A. y  e.  ( _|_ `  A
) ( x  .h  y )  e.  ( _|_ `  A ) ) ) )
6512, 63, 64sylanbrc 646 1  |-  ( A 
C_  ~H  ->  ( _|_ `  A )  e.  SH )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   {crab 2670    C_ wss 3280   ` cfv 5413  (class class class)co 6040   CCcc 8944   0cc0 8946    + caddc 8949    x. cmul 8951   ~Hchil 22375    +h cva 22376    .h csm 22377    .ih csp 22378   0hc0v 22380   SHcsh 22384   _|_cort 22386
This theorem is referenced by:  shocsh  22739  ocss  22740  occl  22759  spanssoc  22804  ssjo  22902  chscllem2  23093
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-hilex 22455  ax-hfvadd 22456  ax-hv0cl 22459  ax-hfvmul 22461  ax-hvmul0 22466  ax-hfi 22534  ax-his2 22538  ax-his3 22539
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-ltxr 9081  df-sh 22662  df-oc 22707
  Copyright terms: Public domain W3C validator