MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe0 Unicode version

Theorem oe0 6523
Description: Ordinal exponentiation with zero exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oe0  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )

Proof of Theorem oe0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq1 5867 . . . . 5  |-  ( A  =  (/)  ->  ( A  ^o  (/) )  =  (
(/)  ^o  (/) ) )
2 oe0m0 6521 . . . . 5  |-  ( (/)  ^o  (/) )  =  1o
31, 2syl6eq 2333 . . . 4  |-  ( A  =  (/)  ->  ( A  ^o  (/) )  =  1o )
43adantl 452 . . 3  |-  ( ( A  e.  On  /\  A  =  (/) )  -> 
( A  ^o  (/) )  =  1o )
5 0elon 4447 . . . . . 6  |-  (/)  e.  On
6 oevn0 6516 . . . . . 6  |-  ( ( ( A  e.  On  /\  (/)  e.  On )  /\  (/) 
e.  A )  -> 
( A  ^o  (/) )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `
 (/) ) )
75, 6mpanl2 662 . . . . 5  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( A  ^o  (/) )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `
 (/) ) )
8 1on 6488 . . . . . . 7  |-  1o  e.  On
98elexi 2799 . . . . . 6  |-  1o  e.  _V
109rdg0 6436 . . . . 5  |-  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  (/) )  =  1o
117, 10syl6eq 2333 . . . 4  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( A  ^o  (/) )  =  1o )
1211adantll 694 . . 3  |-  ( ( ( A  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( A  ^o  (/) )  =  1o )
134, 12oe0lem 6514 . 2  |-  ( ( A  e.  On  /\  A  e.  On )  ->  ( A  ^o  (/) )  =  1o )
1413anidms 626 1  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   _Vcvv 2790   (/)c0 3457    e. cmpt 4079   Oncon0 4394   ` cfv 5257  (class class class)co 5860   reccrdg 6424   1oc1o 6474    .o comu 6479    ^o coe 6480
This theorem is referenced by:  oecl  6538  oe1  6544  oe1m  6545  oen0  6586  oewordri  6592  oeoalem  6596  oeoelem  6598  oeoe  6599  oeeulem  6601  nnecl  6613  oaabs2  6645  cantnff  7377
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-recs 6390  df-rdg 6425  df-1o 6481  df-oexp 6487
  Copyright terms: Public domain W3C validator