MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe1m Unicode version

Theorem oe1m 6747
Description: Ordinal exponentiation with a mantissa of 1. Proposition 8.31(3) of [TakeutiZaring] p. 67. (Contributed by NM, 2-Jan-2005.)
Assertion
Ref Expression
oe1m  |-  ( A  e.  On  ->  ( 1o  ^o  A )  =  1o )

Proof of Theorem oe1m
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6048 . . 3  |-  ( x  =  (/)  ->  ( 1o 
^o  x )  =  ( 1o  ^o  (/) ) )
21eqeq1d 2412 . 2  |-  ( x  =  (/)  ->  ( ( 1o  ^o  x )  =  1o  <->  ( 1o  ^o  (/) )  =  1o ) )
3 oveq2 6048 . . 3  |-  ( x  =  y  ->  ( 1o  ^o  x )  =  ( 1o  ^o  y
) )
43eqeq1d 2412 . 2  |-  ( x  =  y  ->  (
( 1o  ^o  x
)  =  1o  <->  ( 1o  ^o  y )  =  1o ) )
5 oveq2 6048 . . 3  |-  ( x  =  suc  y  -> 
( 1o  ^o  x
)  =  ( 1o 
^o  suc  y )
)
65eqeq1d 2412 . 2  |-  ( x  =  suc  y  -> 
( ( 1o  ^o  x )  =  1o  <->  ( 1o  ^o  suc  y
)  =  1o ) )
7 oveq2 6048 . . 3  |-  ( x  =  A  ->  ( 1o  ^o  x )  =  ( 1o  ^o  A
) )
87eqeq1d 2412 . 2  |-  ( x  =  A  ->  (
( 1o  ^o  x
)  =  1o  <->  ( 1o  ^o  A )  =  1o ) )
9 1on 6690 . . 3  |-  1o  e.  On
10 oe0 6725 . . 3  |-  ( 1o  e.  On  ->  ( 1o  ^o  (/) )  =  1o )
119, 10ax-mp 8 . 2  |-  ( 1o 
^o  (/) )  =  1o
12 oesuc 6730 . . . . 5  |-  ( ( 1o  e.  On  /\  y  e.  On )  ->  ( 1o  ^o  suc  y )  =  ( ( 1o  ^o  y
)  .o  1o ) )
139, 12mpan 652 . . . 4  |-  ( y  e.  On  ->  ( 1o  ^o  suc  y )  =  ( ( 1o 
^o  y )  .o  1o ) )
14 oveq1 6047 . . . . 5  |-  ( ( 1o  ^o  y )  =  1o  ->  (
( 1o  ^o  y
)  .o  1o )  =  ( 1o  .o  1o ) )
15 om1 6744 . . . . . 6  |-  ( 1o  e.  On  ->  ( 1o  .o  1o )  =  1o )
169, 15ax-mp 8 . . . . 5  |-  ( 1o 
.o  1o )  =  1o
1714, 16syl6eq 2452 . . . 4  |-  ( ( 1o  ^o  y )  =  1o  ->  (
( 1o  ^o  y
)  .o  1o )  =  1o )
1813, 17sylan9eq 2456 . . 3  |-  ( ( y  e.  On  /\  ( 1o  ^o  y
)  =  1o )  ->  ( 1o  ^o  suc  y )  =  1o )
1918ex 424 . 2  |-  ( y  e.  On  ->  (
( 1o  ^o  y
)  =  1o  ->  ( 1o  ^o  suc  y
)  =  1o ) )
20 iuneq2 4069 . . 3  |-  ( A. y  e.  x  ( 1o  ^o  y )  =  1o  ->  U_ y  e.  x  ( 1o  ^o  y )  =  U_ y  e.  x  1o )
21 vex 2919 . . . . . 6  |-  x  e. 
_V
22 0lt1o 6707 . . . . . . . 8  |-  (/)  e.  1o
23 oelim 6737 . . . . . . . 8  |-  ( ( ( 1o  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  1o )  ->  ( 1o  ^o  x )  =  U_ y  e.  x  ( 1o  ^o  y ) )
2422, 23mpan2 653 . . . . . . 7  |-  ( ( 1o  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( 1o  ^o  x )  =  U_ y  e.  x  ( 1o  ^o  y ) )
259, 24mpan 652 . . . . . 6  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( 1o  ^o  x )  = 
U_ y  e.  x  ( 1o  ^o  y
) )
2621, 25mpan 652 . . . . 5  |-  ( Lim  x  ->  ( 1o  ^o  x )  =  U_ y  e.  x  ( 1o  ^o  y ) )
2726eqeq1d 2412 . . . 4  |-  ( Lim  x  ->  ( ( 1o  ^o  x )  =  1o  <->  U_ y  e.  x  ( 1o  ^o  y
)  =  1o ) )
28 0ellim 4603 . . . . . 6  |-  ( Lim  x  ->  (/)  e.  x
)
29 ne0i 3594 . . . . . 6  |-  ( (/)  e.  x  ->  x  =/=  (/) )
30 iunconst 4061 . . . . . 6  |-  ( x  =/=  (/)  ->  U_ y  e.  x  1o  =  1o )
3128, 29, 303syl 19 . . . . 5  |-  ( Lim  x  ->  U_ y  e.  x  1o  =  1o )
3231eqeq2d 2415 . . . 4  |-  ( Lim  x  ->  ( U_ y  e.  x  ( 1o  ^o  y )  = 
U_ y  e.  x  1o 
<-> 
U_ y  e.  x  ( 1o  ^o  y
)  =  1o ) )
3327, 32bitr4d 248 . . 3  |-  ( Lim  x  ->  ( ( 1o  ^o  x )  =  1o  <->  U_ y  e.  x  ( 1o  ^o  y
)  =  U_ y  e.  x  1o )
)
3420, 33syl5ibr 213 . 2  |-  ( Lim  x  ->  ( A. y  e.  x  ( 1o  ^o  y )  =  1o  ->  ( 1o  ^o  x )  =  1o ) )
352, 4, 6, 8, 11, 19, 34tfinds 4798 1  |-  ( A  e.  On  ->  ( 1o  ^o  A )  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   _Vcvv 2916   (/)c0 3588   U_ciun 4053   Oncon0 4541   Lim wlim 4542   suc csuc 4543  (class class class)co 6040   1oc1o 6676    .o comu 6681    ^o coe 6682
This theorem is referenced by:  oewordi  6793  oeoe  6801  cantnflem2  7602
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-omul 6688  df-oexp 6689
  Copyright terms: Public domain W3C validator