MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oelim Unicode version

Theorem oelim 6741
Description: Ordinal exponentiation with a limit exponent and nonzero mantissa. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by NM, 1-Jan-2005.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oelim  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  U_ x  e.  B  ( A  ^o  x ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem oelim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 limelon 4608 . . 3  |-  ( ( B  e.  C  /\  Lim  B )  ->  B  e.  On )
2 simpr 448 . . 3  |-  ( ( B  e.  C  /\  Lim  B )  ->  Lim  B )
31, 2jca 519 . 2  |-  ( ( B  e.  C  /\  Lim  B )  ->  ( B  e.  On  /\  Lim  B ) )
4 rdglim2a 6654 . . . 4  |-  ( ( B  e.  On  /\  Lim  B )  ->  ( rec ( ( y  e. 
_V  |->  ( y  .o  A ) ) ,  1o ) `  B
)  =  U_ x  e.  B  ( rec ( ( y  e. 
_V  |->  ( y  .o  A ) ) ,  1o ) `  x
) )
54ad2antlr 708 . . 3  |-  ( ( ( A  e.  On  /\  ( B  e.  On  /\ 
Lim  B ) )  /\  (/)  e.  A )  ->  ( rec (
( y  e.  _V  |->  ( y  .o  A
) ) ,  1o ) `  B )  =  U_ x  e.  B  ( rec ( ( y  e.  _V  |->  ( y  .o  A ) ) ,  1o ) `  x ) )
6 oevn0 6722 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  ( rec ( ( y  e.  _V  |->  ( y  .o  A ) ) ,  1o ) `  B ) )
7 onelon 4570 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  x  e.  B )  ->  x  e.  On )
8 oevn0 6722 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  (/)  e.  A )  ->  ( A  ^o  x )  =  ( rec ( ( y  e.  _V  |->  ( y  .o  A ) ) ,  1o ) `  x ) )
97, 8sylanl2 633 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  ( B  e.  On  /\  x  e.  B ) )  /\  (/)  e.  A
)  ->  ( A  ^o  x )  =  ( rec ( ( y  e.  _V  |->  ( y  .o  A ) ) ,  1o ) `  x ) )
109exp42 595 . . . . . . . 8  |-  ( A  e.  On  ->  ( B  e.  On  ->  ( x  e.  B  -> 
( (/)  e.  A  -> 
( A  ^o  x
)  =  ( rec ( ( y  e. 
_V  |->  ( y  .o  A ) ) ,  1o ) `  x
) ) ) ) )
1110com34 79 . . . . . . 7  |-  ( A  e.  On  ->  ( B  e.  On  ->  (
(/)  e.  A  ->  ( x  e.  B  -> 
( A  ^o  x
)  =  ( rec ( ( y  e. 
_V  |->  ( y  .o  A ) ) ,  1o ) `  x
) ) ) ) )
1211imp41 577 . . . . . 6  |-  ( ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A
)  /\  x  e.  B )  ->  ( A  ^o  x )  =  ( rec ( ( y  e.  _V  |->  ( y  .o  A ) ) ,  1o ) `
 x ) )
1312iuneq2dv 4078 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  U_ x  e.  B  ( A  ^o  x
)  =  U_ x  e.  B  ( rec ( ( y  e. 
_V  |->  ( y  .o  A ) ) ,  1o ) `  x
) )
146, 13eqeq12d 2422 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  ( ( A  ^o  B )  = 
U_ x  e.  B  ( A  ^o  x
)  <->  ( rec (
( y  e.  _V  |->  ( y  .o  A
) ) ,  1o ) `  B )  =  U_ x  e.  B  ( rec ( ( y  e.  _V  |->  ( y  .o  A ) ) ,  1o ) `  x ) ) )
1514adantlrr 702 . . 3  |-  ( ( ( A  e.  On  /\  ( B  e.  On  /\ 
Lim  B ) )  /\  (/)  e.  A )  ->  ( ( A  ^o  B )  = 
U_ x  e.  B  ( A  ^o  x
)  <->  ( rec (
( y  e.  _V  |->  ( y  .o  A
) ) ,  1o ) `  B )  =  U_ x  e.  B  ( rec ( ( y  e.  _V  |->  ( y  .o  A ) ) ,  1o ) `  x ) ) )
165, 15mpbird 224 . 2  |-  ( ( ( A  e.  On  /\  ( B  e.  On  /\ 
Lim  B ) )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  U_ x  e.  B  ( A  ^o  x ) )
173, 16sylanl2 633 1  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  U_ x  e.  B  ( A  ^o  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2920   (/)c0 3592   U_ciun 4057    e. cmpt 4230   Oncon0 4545   Lim wlim 4546   ` cfv 5417  (class class class)co 6044   reccrdg 6630   1oc1o 6680    .o comu 6685    ^o coe 6686
This theorem is referenced by:  oecl  6744  oe1m  6751  oen0  6792  oeordi  6793  oewordri  6798  oeworde  6799  oelim2  6801  oeoalem  6802  oeoelem  6804  oeeulem  6807
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-recs 6596  df-rdg 6631  df-1o 6687  df-oexp 6693
  Copyright terms: Public domain W3C validator