MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oelim Unicode version

Theorem oelim 6620
Description: Ordinal exponentiation with a limit exponent and nonzero mantissa. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by NM, 1-Jan-2005.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oelim  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  U_ x  e.  B  ( A  ^o  x ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem oelim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 limelon 4537 . . 3  |-  ( ( B  e.  C  /\  Lim  B )  ->  B  e.  On )
2 simpr 447 . . 3  |-  ( ( B  e.  C  /\  Lim  B )  ->  Lim  B )
31, 2jca 518 . 2  |-  ( ( B  e.  C  /\  Lim  B )  ->  ( B  e.  On  /\  Lim  B ) )
4 rdglim2a 6533 . . . 4  |-  ( ( B  e.  On  /\  Lim  B )  ->  ( rec ( ( y  e. 
_V  |->  ( y  .o  A ) ) ,  1o ) `  B
)  =  U_ x  e.  B  ( rec ( ( y  e. 
_V  |->  ( y  .o  A ) ) ,  1o ) `  x
) )
54ad2antlr 707 . . 3  |-  ( ( ( A  e.  On  /\  ( B  e.  On  /\ 
Lim  B ) )  /\  (/)  e.  A )  ->  ( rec (
( y  e.  _V  |->  ( y  .o  A
) ) ,  1o ) `  B )  =  U_ x  e.  B  ( rec ( ( y  e.  _V  |->  ( y  .o  A ) ) ,  1o ) `  x ) )
6 oevn0 6601 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  ( rec ( ( y  e.  _V  |->  ( y  .o  A ) ) ,  1o ) `  B ) )
7 onelon 4499 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  x  e.  B )  ->  x  e.  On )
8 oevn0 6601 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  (/)  e.  A )  ->  ( A  ^o  x )  =  ( rec ( ( y  e.  _V  |->  ( y  .o  A ) ) ,  1o ) `  x ) )
97, 8sylanl2 632 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  ( B  e.  On  /\  x  e.  B ) )  /\  (/)  e.  A
)  ->  ( A  ^o  x )  =  ( rec ( ( y  e.  _V  |->  ( y  .o  A ) ) ,  1o ) `  x ) )
109exp42 594 . . . . . . . 8  |-  ( A  e.  On  ->  ( B  e.  On  ->  ( x  e.  B  -> 
( (/)  e.  A  -> 
( A  ^o  x
)  =  ( rec ( ( y  e. 
_V  |->  ( y  .o  A ) ) ,  1o ) `  x
) ) ) ) )
1110com34 77 . . . . . . 7  |-  ( A  e.  On  ->  ( B  e.  On  ->  (
(/)  e.  A  ->  ( x  e.  B  -> 
( A  ^o  x
)  =  ( rec ( ( y  e. 
_V  |->  ( y  .o  A ) ) ,  1o ) `  x
) ) ) ) )
1211imp41 576 . . . . . 6  |-  ( ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A
)  /\  x  e.  B )  ->  ( A  ^o  x )  =  ( rec ( ( y  e.  _V  |->  ( y  .o  A ) ) ,  1o ) `
 x ) )
1312iuneq2dv 4007 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  U_ x  e.  B  ( A  ^o  x
)  =  U_ x  e.  B  ( rec ( ( y  e. 
_V  |->  ( y  .o  A ) ) ,  1o ) `  x
) )
146, 13eqeq12d 2372 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  ( ( A  ^o  B )  = 
U_ x  e.  B  ( A  ^o  x
)  <->  ( rec (
( y  e.  _V  |->  ( y  .o  A
) ) ,  1o ) `  B )  =  U_ x  e.  B  ( rec ( ( y  e.  _V  |->  ( y  .o  A ) ) ,  1o ) `  x ) ) )
1514adantlrr 701 . . 3  |-  ( ( ( A  e.  On  /\  ( B  e.  On  /\ 
Lim  B ) )  /\  (/)  e.  A )  ->  ( ( A  ^o  B )  = 
U_ x  e.  B  ( A  ^o  x
)  <->  ( rec (
( y  e.  _V  |->  ( y  .o  A
) ) ,  1o ) `  B )  =  U_ x  e.  B  ( rec ( ( y  e.  _V  |->  ( y  .o  A ) ) ,  1o ) `  x ) ) )
165, 15mpbird 223 . 2  |-  ( ( ( A  e.  On  /\  ( B  e.  On  /\ 
Lim  B ) )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  U_ x  e.  B  ( A  ^o  x ) )
173, 16sylanl2 632 1  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  U_ x  e.  B  ( A  ^o  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710   _Vcvv 2864   (/)c0 3531   U_ciun 3986    e. cmpt 4158   Oncon0 4474   Lim wlim 4475   ` cfv 5337  (class class class)co 5945   reccrdg 6509   1oc1o 6559    .o comu 6564    ^o coe 6565
This theorem is referenced by:  oecl  6623  oe1m  6630  oen0  6671  oeordi  6672  oewordri  6677  oeworde  6678  oelim2  6680  oeoalem  6681  oeoelem  6683  oeeulem  6686
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-recs 6475  df-rdg 6510  df-1o 6566  df-oexp 6572
  Copyright terms: Public domain W3C validator