MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oelim2 Unicode version

Theorem oelim2 6479
Description: Ordinal exponentiation with a limit exponent. Part of Exercise 4.36 of [Mendelson] p. 250. (Contributed by NM, 6-Jan-2005.)
Assertion
Ref Expression
oelim2  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  ^o  B )  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem oelim2
StepHypRef Expression
1 limelon 4348 . . . . . 6  |-  ( ( B  e.  C  /\  Lim  B )  ->  B  e.  On )
2 0ellim 4347 . . . . . . 7  |-  ( Lim 
B  ->  (/)  e.  B
)
32adantl 454 . . . . . 6  |-  ( ( B  e.  C  /\  Lim  B )  ->  (/)  e.  B
)
4 oe0m1 6406 . . . . . . 7  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  ( (/)  ^o  B
)  =  (/) ) )
54biimpa 472 . . . . . 6  |-  ( ( B  e.  On  /\  (/) 
e.  B )  -> 
( (/)  ^o  B )  =  (/) )
61, 3, 5syl2anc 645 . . . . 5  |-  ( ( B  e.  C  /\  Lim  B )  ->  ( (/) 
^o  B )  =  (/) )
7 eldif 3088 . . . . . . . . 9  |-  ( x  e.  ( B  \  1o )  <->  ( x  e.  B  /\  -.  x  e.  1o ) )
8 limord 4344 . . . . . . . . . . . 12  |-  ( Lim 
B  ->  Ord  B )
9 ordelon 4309 . . . . . . . . . . . 12  |-  ( ( Ord  B  /\  x  e.  B )  ->  x  e.  On )
108, 9sylan 459 . . . . . . . . . . 11  |-  ( ( Lim  B  /\  x  e.  B )  ->  x  e.  On )
11 on0eln0 4340 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  ( (/) 
e.  x  <->  x  =/=  (/) ) )
12 el1o 6384 . . . . . . . . . . . . . 14  |-  ( x  e.  1o  <->  x  =  (/) )
1312necon3bbii 2443 . . . . . . . . . . . . 13  |-  ( -.  x  e.  1o  <->  x  =/=  (/) )
1411, 13syl6bbr 256 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  ( (/) 
e.  x  <->  -.  x  e.  1o ) )
15 oe0m1 6406 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  ( (/) 
e.  x  <->  ( (/)  ^o  x
)  =  (/) ) )
1615biimpd 200 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  ( (/) 
e.  x  ->  ( (/) 
^o  x )  =  (/) ) )
1714, 16sylbird 228 . . . . . . . . . . 11  |-  ( x  e.  On  ->  ( -.  x  e.  1o  ->  ( (/)  ^o  x
)  =  (/) ) )
1810, 17syl 17 . . . . . . . . . 10  |-  ( ( Lim  B  /\  x  e.  B )  ->  ( -.  x  e.  1o  ->  ( (/)  ^o  x
)  =  (/) ) )
1918impr 605 . . . . . . . . 9  |-  ( ( Lim  B  /\  (
x  e.  B  /\  -.  x  e.  1o ) )  ->  ( (/) 
^o  x )  =  (/) )
207, 19sylan2b 463 . . . . . . . 8  |-  ( ( Lim  B  /\  x  e.  ( B  \  1o ) )  ->  ( (/) 
^o  x )  =  (/) )
2120iuneq2dv 3824 . . . . . . 7  |-  ( Lim 
B  ->  U_ x  e.  ( B  \  1o ) ( (/)  ^o  x
)  =  U_ x  e.  ( B  \  1o ) (/) )
22 df-1o 6365 . . . . . . . . . . 11  |-  1o  =  suc  (/)
23 limsuc 4531 . . . . . . . . . . . 12  |-  ( Lim 
B  ->  ( (/)  e.  B  <->  suc  (/)  e.  B ) )
242, 23mpbid 203 . . . . . . . . . . 11  |-  ( Lim 
B  ->  suc  (/)  e.  B
)
2522, 24syl5eqel 2337 . . . . . . . . . 10  |-  ( Lim 
B  ->  1o  e.  B )
26 1on 6372 . . . . . . . . . . 11  |-  1o  e.  On
2726onirri 4390 . . . . . . . . . 10  |-  -.  1o  e.  1o
2825, 27jctir 526 . . . . . . . . 9  |-  ( Lim 
B  ->  ( 1o  e.  B  /\  -.  1o  e.  1o ) )
29 eldif 3088 . . . . . . . . 9  |-  ( 1o  e.  ( B  \  1o )  <->  ( 1o  e.  B  /\  -.  1o  e.  1o ) )
3028, 29sylibr 205 . . . . . . . 8  |-  ( Lim 
B  ->  1o  e.  ( B  \  1o ) )
31 ne0i 3368 . . . . . . . 8  |-  ( 1o  e.  ( B  \  1o )  ->  ( B 
\  1o )  =/=  (/) )
32 iunconst 3811 . . . . . . . 8  |-  ( ( B  \  1o )  =/=  (/)  ->  U_ x  e.  ( B  \  1o ) (/)  =  (/) )
3330, 31, 323syl 20 . . . . . . 7  |-  ( Lim 
B  ->  U_ x  e.  ( B  \  1o ) (/)  =  (/) )
3421, 33eqtrd 2285 . . . . . 6  |-  ( Lim 
B  ->  U_ x  e.  ( B  \  1o ) ( (/)  ^o  x
)  =  (/) )
3534adantl 454 . . . . 5  |-  ( ( B  e.  C  /\  Lim  B )  ->  U_ x  e.  ( B  \  1o ) ( (/)  ^o  x
)  =  (/) )
366, 35eqtr4d 2288 . . . 4  |-  ( ( B  e.  C  /\  Lim  B )  ->  ( (/) 
^o  B )  = 
U_ x  e.  ( B  \  1o ) ( (/)  ^o  x
) )
37 oveq1 5717 . . . . 5  |-  ( A  =  (/)  ->  ( A  ^o  B )  =  ( (/)  ^o  B ) )
38 oveq1 5717 . . . . . 6  |-  ( A  =  (/)  ->  ( A  ^o  x )  =  ( (/)  ^o  x
) )
3938iuneq2d 3828 . . . . 5  |-  ( A  =  (/)  ->  U_ x  e.  ( B  \  1o ) ( A  ^o  x )  =  U_ x  e.  ( B  \  1o ) ( (/)  ^o  x ) )
4037, 39eqeq12d 2267 . . . 4  |-  ( A  =  (/)  ->  ( ( A  ^o  B )  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x )  <->  ( (/)  ^o  B
)  =  U_ x  e.  ( B  \  1o ) ( (/)  ^o  x
) ) )
4136, 40syl5ibr 214 . . 3  |-  ( A  =  (/)  ->  ( ( B  e.  C  /\  Lim  B )  ->  ( A  ^o  B )  = 
U_ x  e.  ( B  \  1o ) ( A  ^o  x
) ) )
4241impcom 421 . 2  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  A  =  (/) )  -> 
( A  ^o  B
)  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
43 oelim 6419 . . 3  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  U_ y  e.  B  ( A  ^o  y ) )
44 limsuc 4531 . . . . . . . . . . . . 13  |-  ( Lim 
B  ->  ( y  e.  B  <->  suc  y  e.  B
) )
4544biimpa 472 . . . . . . . . . . . 12  |-  ( ( Lim  B  /\  y  e.  B )  ->  suc  y  e.  B )
46 nsuceq0 4365 . . . . . . . . . . . . 13  |-  suc  y  =/=  (/)
4746a1i 12 . . . . . . . . . . . 12  |-  ( ( Lim  B  /\  y  e.  B )  ->  suc  y  =/=  (/) )
48 dif1o 6385 . . . . . . . . . . . 12  |-  ( suc  y  e.  ( B 
\  1o )  <->  ( suc  y  e.  B  /\  suc  y  =/=  (/) ) )
4945, 47, 48sylanbrc 648 . . . . . . . . . . 11  |-  ( ( Lim  B  /\  y  e.  B )  ->  suc  y  e.  ( B  \  1o ) )
5049ex 425 . . . . . . . . . 10  |-  ( Lim 
B  ->  ( y  e.  B  ->  suc  y  e.  ( B  \  1o ) ) )
5150ad2antlr 710 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  -> 
( y  e.  B  ->  suc  y  e.  ( B  \  1o ) ) )
52 sssucid 4362 . . . . . . . . . . 11  |-  y  C_  suc  y
53 ordelon 4309 . . . . . . . . . . . . . . . . 17  |-  ( ( Ord  B  /\  y  e.  B )  ->  y  e.  On )
548, 53sylan 459 . . . . . . . . . . . . . . . 16  |-  ( ( Lim  B  /\  y  e.  B )  ->  y  e.  On )
55 suceloni 4495 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  On  ->  suc  y  e.  On )
5655ancli 536 . . . . . . . . . . . . . . . 16  |-  ( y  e.  On  ->  (
y  e.  On  /\  suc  y  e.  On ) )
5754, 56syl 17 . . . . . . . . . . . . . . 15  |-  ( ( Lim  B  /\  y  e.  B )  ->  (
y  e.  On  /\  suc  y  e.  On ) )
58 id 21 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  On  /\  suc  y  e.  On  /\  A  e.  On )  ->  ( y  e.  On  /\  suc  y  e.  On  /\  A  e.  On ) )
59583expa 1156 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  On  /\ 
suc  y  e.  On )  /\  A  e.  On )  ->  ( y  e.  On  /\  suc  y  e.  On  /\  A  e.  On ) )
6059ancoms 441 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  On  /\  ( y  e.  On  /\ 
suc  y  e.  On ) )  ->  (
y  e.  On  /\  suc  y  e.  On  /\  A  e.  On ) )
6157, 60sylan2 462 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  ( Lim  B  /\  y  e.  B ) )  -> 
( y  e.  On  /\ 
suc  y  e.  On  /\  A  e.  On ) )
6261anassrs 632 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  y  e.  B )  ->  ( y  e.  On  /\ 
suc  y  e.  On  /\  A  e.  On ) )
63 oewordi 6475 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  On  /\ 
suc  y  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( y  C_  suc  y  ->  ( A  ^o  y )  C_  ( A  ^o  suc  y
) ) )
6462, 63sylan 459 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  On  /\  Lim  B
)  /\  y  e.  B )  /\  (/)  e.  A
)  ->  ( y  C_ 
suc  y  ->  ( A  ^o  y )  C_  ( A  ^o  suc  y
) ) )
6564an32s 782 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  On  /\  Lim  B
)  /\  (/)  e.  A
)  /\  y  e.  B )  ->  (
y  C_  suc  y  -> 
( A  ^o  y
)  C_  ( A  ^o  suc  y ) ) )
6652, 65mpi 18 . . . . . . . . . 10  |-  ( ( ( ( A  e.  On  /\  Lim  B
)  /\  (/)  e.  A
)  /\  y  e.  B )  ->  ( A  ^o  y )  C_  ( A  ^o  suc  y
) )
6766ex 425 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  -> 
( y  e.  B  ->  ( A  ^o  y
)  C_  ( A  ^o  suc  y ) ) )
6851, 67jcad 521 . . . . . . . 8  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  -> 
( y  e.  B  ->  ( suc  y  e.  ( B  \  1o )  /\  ( A  ^o  y )  C_  ( A  ^o  suc  y ) ) ) )
69 oveq2 5718 . . . . . . . . . 10  |-  ( x  =  suc  y  -> 
( A  ^o  x
)  =  ( A  ^o  suc  y ) )
7069sseq2d 3127 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( ( A  ^o  y )  C_  ( A  ^o  x )  <->  ( A  ^o  y )  C_  ( A  ^o  suc  y ) ) )
7170rcla4ev 2821 . . . . . . . 8  |-  ( ( suc  y  e.  ( B  \  1o )  /\  ( A  ^o  y )  C_  ( A  ^o  suc  y ) )  ->  E. x  e.  ( B  \  1o ) ( A  ^o  y )  C_  ( A  ^o  x ) )
7268, 71syl6 31 . . . . . . 7  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  -> 
( y  e.  B  ->  E. x  e.  ( B  \  1o ) ( A  ^o  y
)  C_  ( A  ^o  x ) ) )
7372ralrimiv 2587 . . . . . 6  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  ->  A. y  e.  B  E. x  e.  ( B  \  1o ) ( A  ^o  y ) 
C_  ( A  ^o  x ) )
74 iunss2 3845 . . . . . 6  |-  ( A. y  e.  B  E. x  e.  ( B  \  1o ) ( A  ^o  y )  C_  ( A  ^o  x
)  ->  U_ y  e.  B  ( A  ^o  y )  C_  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
7573, 74syl 17 . . . . 5  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  ->  U_ y  e.  B  ( A  ^o  y
)  C_  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
76 difss 3220 . . . . . . . 8  |-  ( B 
\  1o )  C_  B
77 iunss1 3814 . . . . . . . 8  |-  ( ( B  \  1o ) 
C_  B  ->  U_ x  e.  ( B  \  1o ) ( A  ^o  x )  C_  U_ x  e.  B  ( A  ^o  x ) )
7876, 77ax-mp 10 . . . . . . 7  |-  U_ x  e.  ( B  \  1o ) ( A  ^o  x )  C_  U_ x  e.  B  ( A  ^o  x )
79 oveq2 5718 . . . . . . . 8  |-  ( x  =  y  ->  ( A  ^o  x )  =  ( A  ^o  y
) )
8079cbviunv 3839 . . . . . . 7  |-  U_ x  e.  B  ( A  ^o  x )  =  U_ y  e.  B  ( A  ^o  y )
8178, 80sseqtri 3131 . . . . . 6  |-  U_ x  e.  ( B  \  1o ) ( A  ^o  x )  C_  U_ y  e.  B  ( A  ^o  y )
8281a1i 12 . . . . 5  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  ->  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) 
C_  U_ y  e.  B  ( A  ^o  y
) )
8375, 82eqssd 3117 . . . 4  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  ->  U_ y  e.  B  ( A  ^o  y
)  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
8483adantlrl 703 . . 3  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  U_ y  e.  B  ( A  ^o  y
)  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
8543, 84eqtrd 2285 . 2  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
8642, 85oe0lem 6398 1  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  ^o  B )  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   E.wrex 2510    \ cdif 3075    C_ wss 3078   (/)c0 3362   U_ciun 3803   Ord word 4284   Oncon0 4285   Lim wlim 4286   suc csuc 4287  (class class class)co 5710   1oc1o 6358    ^o coe 6364
This theorem is referenced by:  oelimcl  6484  oaabs2  6529  omabs  6531
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-omul 6370  df-oexp 6371
  Copyright terms: Public domain W3C validator