MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oen0 Unicode version

Theorem oen0 6788
Description: Ordinal exponentiation with a nonzero mantissa is nonzero. Proposition 8.32 of [TakeutiZaring] p. 67. (Contributed by NM, 4-Jan-2005.)
Assertion
Ref Expression
oen0  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  (/)  e.  ( A  ^o  B ) )

Proof of Theorem oen0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6048 . . . . . 6  |-  ( x  =  (/)  ->  ( A  ^o  x )  =  ( A  ^o  (/) ) )
21eleq2d 2471 . . . . 5  |-  ( x  =  (/)  ->  ( (/)  e.  ( A  ^o  x
)  <->  (/)  e.  ( A  ^o  (/) ) ) )
3 oveq2 6048 . . . . . 6  |-  ( x  =  y  ->  ( A  ^o  x )  =  ( A  ^o  y
) )
43eleq2d 2471 . . . . 5  |-  ( x  =  y  ->  ( (/) 
e.  ( A  ^o  x )  <->  (/)  e.  ( A  ^o  y ) ) )
5 oveq2 6048 . . . . . 6  |-  ( x  =  suc  y  -> 
( A  ^o  x
)  =  ( A  ^o  suc  y ) )
65eleq2d 2471 . . . . 5  |-  ( x  =  suc  y  -> 
( (/)  e.  ( A  ^o  x )  <->  (/)  e.  ( A  ^o  suc  y
) ) )
7 oveq2 6048 . . . . . 6  |-  ( x  =  B  ->  ( A  ^o  x )  =  ( A  ^o  B
) )
87eleq2d 2471 . . . . 5  |-  ( x  =  B  ->  ( (/) 
e.  ( A  ^o  x )  <->  (/)  e.  ( A  ^o  B ) ) )
9 0lt1o 6707 . . . . . . 7  |-  (/)  e.  1o
10 oe0 6725 . . . . . . 7  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )
119, 10syl5eleqr 2491 . . . . . 6  |-  ( A  e.  On  ->  (/)  e.  ( A  ^o  (/) ) )
1211adantr 452 . . . . 5  |-  ( ( A  e.  On  /\  (/) 
e.  A )  ->  (/) 
e.  ( A  ^o  (/) ) )
13 simpl 444 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  y  e.  On )  ->  A  e.  On )
14 oecl 6740 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  ^o  y
)  e.  On )
1513, 14jca 519 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  e.  On  /\  ( A  ^o  y
)  e.  On ) )
16 omordi 6768 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  ( A  ^o  y
)  e.  On )  /\  (/)  e.  ( A  ^o  y ) )  ->  ( (/)  e.  A  ->  ( ( A  ^o  y )  .o  (/) )  e.  ( ( A  ^o  y )  .o  A
) ) )
17 om0 6720 . . . . . . . . . . . . . 14  |-  ( ( A  ^o  y )  e.  On  ->  (
( A  ^o  y
)  .o  (/) )  =  (/) )
1817eleq1d 2470 . . . . . . . . . . . . 13  |-  ( ( A  ^o  y )  e.  On  ->  (
( ( A  ^o  y )  .o  (/) )  e.  ( ( A  ^o  y )  .o  A
)  <->  (/)  e.  ( ( A  ^o  y )  .o  A ) ) )
1918ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  ( A  ^o  y
)  e.  On )  /\  (/)  e.  ( A  ^o  y ) )  ->  ( ( ( A  ^o  y )  .o  (/) )  e.  ( ( A  ^o  y
)  .o  A )  <->  (/) 
e.  ( ( A  ^o  y )  .o  A ) ) )
2016, 19sylibd 206 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  ( A  ^o  y
)  e.  On )  /\  (/)  e.  ( A  ^o  y ) )  ->  ( (/)  e.  A  -> 
(/)  e.  ( ( A  ^o  y )  .o  A ) ) )
2115, 20sylan 458 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  y  e.  On )  /\  (/)  e.  ( A  ^o  y ) )  ->  ( (/)  e.  A  -> 
(/)  e.  ( ( A  ^o  y )  .o  A ) ) )
22 oesuc 6730 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  ^o  suc  y )  =  ( ( A  ^o  y
)  .o  A ) )
2322eleq2d 2471 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( (/)  e.  ( A  ^o  suc  y )  <->  (/) 
e.  ( ( A  ^o  y )  .o  A ) ) )
2423adantr 452 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  y  e.  On )  /\  (/)  e.  ( A  ^o  y ) )  ->  ( (/)  e.  ( A  ^o  suc  y
)  <->  (/)  e.  ( ( A  ^o  y )  .o  A ) ) )
2521, 24sylibrd 226 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  y  e.  On )  /\  (/)  e.  ( A  ^o  y ) )  ->  ( (/)  e.  A  -> 
(/)  e.  ( A  ^o  suc  y ) ) )
2625exp31 588 . . . . . . . 8  |-  ( A  e.  On  ->  (
y  e.  On  ->  (
(/)  e.  ( A  ^o  y )  ->  ( (/) 
e.  A  ->  (/)  e.  ( A  ^o  suc  y
) ) ) ) )
2726com12 29 . . . . . . 7  |-  ( y  e.  On  ->  ( A  e.  On  ->  (
(/)  e.  ( A  ^o  y )  ->  ( (/) 
e.  A  ->  (/)  e.  ( A  ^o  suc  y
) ) ) ) )
2827com34 79 . . . . . 6  |-  ( y  e.  On  ->  ( A  e.  On  ->  (
(/)  e.  A  ->  (
(/)  e.  ( A  ^o  y )  ->  (/)  e.  ( A  ^o  suc  y
) ) ) ) )
2928imp3a 421 . . . . 5  |-  ( y  e.  On  ->  (
( A  e.  On  /\  (/)  e.  A )  -> 
( (/)  e.  ( A  ^o  y )  ->  (/) 
e.  ( A  ^o  suc  y ) ) ) )
30 0ellim 4603 . . . . . . . . . . . 12  |-  ( Lim  x  ->  (/)  e.  x
)
31 eqimss2 3361 . . . . . . . . . . . . 13  |-  ( ( A  ^o  (/) )  =  1o  ->  1o  C_  ( A  ^o  (/) ) )
3210, 31syl 16 . . . . . . . . . . . 12  |-  ( A  e.  On  ->  1o  C_  ( A  ^o  (/) ) )
33 oveq2 6048 . . . . . . . . . . . . . 14  |-  ( y  =  (/)  ->  ( A  ^o  y )  =  ( A  ^o  (/) ) )
3433sseq2d 3336 . . . . . . . . . . . . 13  |-  ( y  =  (/)  ->  ( 1o  C_  ( A  ^o  y
)  <->  1o  C_  ( A  ^o  (/) ) ) )
3534rspcev 3012 . . . . . . . . . . . 12  |-  ( (
(/)  e.  x  /\  1o  C_  ( A  ^o  (/) ) )  ->  E. y  e.  x  1o  C_  ( A  ^o  y ) )
3630, 32, 35syl2an 464 . . . . . . . . . . 11  |-  ( ( Lim  x  /\  A  e.  On )  ->  E. y  e.  x  1o  C_  ( A  ^o  y ) )
37 ssiun 4093 . . . . . . . . . . 11  |-  ( E. y  e.  x  1o  C_  ( A  ^o  y
)  ->  1o  C_  U_ y  e.  x  ( A  ^o  y ) )
3836, 37syl 16 . . . . . . . . . 10  |-  ( ( Lim  x  /\  A  e.  On )  ->  1o  C_ 
U_ y  e.  x  ( A  ^o  y
) )
3938adantrr 698 . . . . . . . . 9  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  1o  C_ 
U_ y  e.  x  ( A  ^o  y
) )
40 vex 2919 . . . . . . . . . . . 12  |-  x  e. 
_V
41 oelim 6737 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  A )  ->  ( A  ^o  x )  =  U_ y  e.  x  ( A  ^o  y ) )
4240, 41mpanlr1 668 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\ 
Lim  x )  /\  (/) 
e.  A )  -> 
( A  ^o  x
)  =  U_ y  e.  x  ( A  ^o  y ) )
4342anasss 629 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  ( Lim  x  /\  (/)  e.  A
) )  ->  ( A  ^o  x )  = 
U_ y  e.  x  ( A  ^o  y
) )
4443an12s 777 . . . . . . . . 9  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  ( A  ^o  x )  = 
U_ y  e.  x  ( A  ^o  y
) )
4539, 44sseqtr4d 3345 . . . . . . . 8  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  1o  C_  ( A  ^o  x
) )
46 limelon 4604 . . . . . . . . . . . 12  |-  ( ( x  e.  _V  /\  Lim  x )  ->  x  e.  On )
4740, 46mpan 652 . . . . . . . . . . 11  |-  ( Lim  x  ->  x  e.  On )
48 oecl 6740 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  ^o  x
)  e.  On )
4948ancoms 440 . . . . . . . . . . 11  |-  ( ( x  e.  On  /\  A  e.  On )  ->  ( A  ^o  x
)  e.  On )
5047, 49sylan 458 . . . . . . . . . 10  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( A  ^o  x )  e.  On )
51 eloni 4551 . . . . . . . . . 10  |-  ( ( A  ^o  x )  e.  On  ->  Ord  ( A  ^o  x
) )
52 ordgt0ge1 6700 . . . . . . . . . 10  |-  ( Ord  ( A  ^o  x
)  ->  ( (/)  e.  ( A  ^o  x )  <-> 
1o  C_  ( A  ^o  x ) ) )
5350, 51, 523syl 19 . . . . . . . . 9  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( (/) 
e.  ( A  ^o  x )  <->  1o  C_  ( A  ^o  x ) ) )
5453adantrr 698 . . . . . . . 8  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  ( (/) 
e.  ( A  ^o  x )  <->  1o  C_  ( A  ^o  x ) ) )
5545, 54mpbird 224 . . . . . . 7  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  (/)  e.  ( A  ^o  x ) )
5655ex 424 . . . . . 6  |-  ( Lim  x  ->  ( ( A  e.  On  /\  (/)  e.  A
)  ->  (/)  e.  ( A  ^o  x ) ) )
5756a1dd 44 . . . . 5  |-  ( Lim  x  ->  ( ( A  e.  On  /\  (/)  e.  A
)  ->  ( A. y  e.  x  (/)  e.  ( A  ^o  y )  ->  (/)  e.  ( A  ^o  x ) ) ) )
582, 4, 6, 8, 12, 29, 57tfinds3 4803 . . . 4  |-  ( B  e.  On  ->  (
( A  e.  On  /\  (/)  e.  A )  ->  (/) 
e.  ( A  ^o  B ) ) )
5958exp3a 426 . . 3  |-  ( B  e.  On  ->  ( A  e.  On  ->  (
(/)  e.  A  ->  (/)  e.  ( A  ^o  B
) ) ) )
6059com12 29 . 2  |-  ( A  e.  On  ->  ( B  e.  On  ->  (
(/)  e.  A  ->  (/)  e.  ( A  ^o  B
) ) ) )
6160imp31 422 1  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  (/)  e.  ( A  ^o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   _Vcvv 2916    C_ wss 3280   (/)c0 3588   U_ciun 4053   Ord word 4540   Oncon0 4541   Lim wlim 4542   suc csuc 4543  (class class class)co 6040   1oc1o 6676    .o comu 6681    ^o coe 6682
This theorem is referenced by:  oeordi  6789  oeordsuc  6796  oeoelem  6800  oelimcl  6802  oeeui  6804  cantnflt  7583  cnfcom  7613  infxpenc  7855  infxpenc2  7859
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-omul 6688  df-oexp 6689
  Copyright terms: Public domain W3C validator