MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoe Unicode version

Theorem oeoe 6833
Description: Product of exponents law for ordinal exponentiation. Theorem 8S of [Enderton] p. 238. Also Proposition 8.42 of [TakeutiZaring] p. 70. (Contributed by Eric Schmidt, 26-May-2009.)
Assertion
Ref Expression
oeoe  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  ^o  B
)  ^o  C )  =  ( A  ^o  ( B  .o  C
) ) )

Proof of Theorem oeoe
StepHypRef Expression
1 oveq2 6080 . . . . . . . . . . . 12  |-  ( B  =  (/)  ->  ( (/)  ^o  B )  =  (
(/)  ^o  (/) ) )
2 oe0m0 6755 . . . . . . . . . . . 12  |-  ( (/)  ^o  (/) )  =  1o
31, 2syl6eq 2483 . . . . . . . . . . 11  |-  ( B  =  (/)  ->  ( (/)  ^o  B )  =  1o )
43oveq1d 6087 . . . . . . . . . 10  |-  ( B  =  (/)  ->  ( (
(/)  ^o  B )  ^o  C )  =  ( 1o  ^o  C ) )
5 oe1m 6779 . . . . . . . . . 10  |-  ( C  e.  On  ->  ( 1o  ^o  C )  =  1o )
64, 5sylan9eqr 2489 . . . . . . . . 9  |-  ( ( C  e.  On  /\  B  =  (/) )  -> 
( ( (/)  ^o  B
)  ^o  C )  =  1o )
76adantll 695 . . . . . . . 8  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  B  =  (/) )  ->  ( ( (/)  ^o  B )  ^o  C
)  =  1o )
8 oveq2 6080 . . . . . . . . . 10  |-  ( C  =  (/)  ->  ( (
(/)  ^o  B )  ^o  C )  =  ( ( (/)  ^o  B )  ^o  (/) ) )
9 0elon 4626 . . . . . . . . . . . 12  |-  (/)  e.  On
10 oecl 6772 . . . . . . . . . . . 12  |-  ( (
(/)  e.  On  /\  B  e.  On )  ->  ( (/) 
^o  B )  e.  On )
119, 10mpan 652 . . . . . . . . . . 11  |-  ( B  e.  On  ->  ( (/) 
^o  B )  e.  On )
12 oe0 6757 . . . . . . . . . . 11  |-  ( (
(/)  ^o  B )  e.  On  ->  ( ( (/) 
^o  B )  ^o  (/) )  =  1o )
1311, 12syl 16 . . . . . . . . . 10  |-  ( B  e.  On  ->  (
( (/)  ^o  B )  ^o  (/) )  =  1o )
148, 13sylan9eqr 2489 . . . . . . . . 9  |-  ( ( B  e.  On  /\  C  =  (/) )  -> 
( ( (/)  ^o  B
)  ^o  C )  =  1o )
1514adantlr 696 . . . . . . . 8  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  C  =  (/) )  ->  ( ( (/)  ^o  B )  ^o  C
)  =  1o )
167, 15jaodan 761 . . . . . . 7  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( B  =  (/)  \/  C  =  (/) ) )  ->  (
( (/)  ^o  B )  ^o  C )  =  1o )
17 om00 6809 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( B  .o  C )  =  (/)  <->  ( B  =  (/)  \/  C  =  (/) ) ) )
1817biimpar 472 . . . . . . . . 9  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( B  =  (/)  \/  C  =  (/) ) )  ->  ( B  .o  C )  =  (/) )
1918oveq2d 6088 . . . . . . . 8  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( B  =  (/)  \/  C  =  (/) ) )  ->  ( (/) 
^o  ( B  .o  C ) )  =  ( (/)  ^o  (/) ) )
2019, 2syl6eq 2483 . . . . . . 7  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( B  =  (/)  \/  C  =  (/) ) )  ->  ( (/) 
^o  ( B  .o  C ) )  =  1o )
2116, 20eqtr4d 2470 . . . . . 6  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( B  =  (/)  \/  C  =  (/) ) )  ->  (
( (/)  ^o  B )  ^o  C )  =  ( (/)  ^o  ( B  .o  C ) ) )
22 on0eln0 4628 . . . . . . . . . 10  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  B  =/=  (/) ) )
23 on0eln0 4628 . . . . . . . . . 10  |-  ( C  e.  On  ->  ( (/) 
e.  C  <->  C  =/=  (/) ) )
2422, 23bi2anan9 844 . . . . . . . . 9  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( (/)  e.  B  /\  (/)  e.  C )  <-> 
( B  =/=  (/)  /\  C  =/=  (/) ) ) )
25 neanior 2683 . . . . . . . . 9  |-  ( ( B  =/=  (/)  /\  C  =/=  (/) )  <->  -.  ( B  =  (/)  \/  C  =  (/) ) )
2624, 25syl6bb 253 . . . . . . . 8  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( (/)  e.  B  /\  (/)  e.  C )  <->  -.  ( B  =  (/)  \/  C  =  (/) ) ) )
27 oe0m1 6756 . . . . . . . . . . . . . 14  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  ( (/)  ^o  B
)  =  (/) ) )
2827biimpa 471 . . . . . . . . . . . . 13  |-  ( ( B  e.  On  /\  (/) 
e.  B )  -> 
( (/)  ^o  B )  =  (/) )
2928oveq1d 6087 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  (/) 
e.  B )  -> 
( ( (/)  ^o  B
)  ^o  C )  =  ( (/)  ^o  C
) )
30 oe0m1 6756 . . . . . . . . . . . . 13  |-  ( C  e.  On  ->  ( (/) 
e.  C  <->  ( (/)  ^o  C
)  =  (/) ) )
3130biimpa 471 . . . . . . . . . . . 12  |-  ( ( C  e.  On  /\  (/) 
e.  C )  -> 
( (/)  ^o  C )  =  (/) )
3229, 31sylan9eq 2487 . . . . . . . . . . 11  |-  ( ( ( B  e.  On  /\  (/)  e.  B )  /\  ( C  e.  On  /\  (/)  e.  C ) )  ->  ( ( (/)  ^o  B )  ^o  C
)  =  (/) )
3332an4s 800 . . . . . . . . . 10  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( (/)  e.  B  /\  (/)  e.  C ) )  ->  ( ( (/) 
^o  B )  ^o  C )  =  (/) )
34 om00el 6810 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  ( B  .o  C )  <->  ( (/)  e.  B  /\  (/)  e.  C ) ) )
35 omcl 6771 . . . . . . . . . . . . 13  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( B  .o  C
)  e.  On )
36 oe0m1 6756 . . . . . . . . . . . . 13  |-  ( ( B  .o  C )  e.  On  ->  ( (/) 
e.  ( B  .o  C )  <->  ( (/)  ^o  ( B  .o  C ) )  =  (/) ) )
3735, 36syl 16 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  ( B  .o  C )  <->  ( (/)  ^o  ( B  .o  C ) )  =  (/) ) )
3834, 37bitr3d 247 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( (/)  e.  B  /\  (/)  e.  C )  <-> 
( (/)  ^o  ( B  .o  C ) )  =  (/) ) )
3938biimpa 471 . . . . . . . . . 10  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( (/)  e.  B  /\  (/)  e.  C ) )  ->  ( (/)  ^o  ( B  .o  C ) )  =  (/) )
4033, 39eqtr4d 2470 . . . . . . . . 9  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( (/)  e.  B  /\  (/)  e.  C ) )  ->  ( ( (/) 
^o  B )  ^o  C )  =  (
(/)  ^o  ( B  .o  C ) ) )
4140ex 424 . . . . . . . 8  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( (/)  e.  B  /\  (/)  e.  C )  ->  ( ( (/)  ^o  B )  ^o  C
)  =  ( (/)  ^o  ( B  .o  C
) ) ) )
4226, 41sylbird 227 . . . . . . 7  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( -.  ( B  =  (/)  \/  C  =  (/) )  ->  (
( (/)  ^o  B )  ^o  C )  =  ( (/)  ^o  ( B  .o  C ) ) ) )
4342imp 419 . . . . . 6  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  -.  ( B  =  (/)  \/  C  =  (/) ) )  -> 
( ( (/)  ^o  B
)  ^o  C )  =  ( (/)  ^o  ( B  .o  C ) ) )
4421, 43pm2.61dan 767 . . . . 5  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( (/)  ^o  B
)  ^o  C )  =  ( (/)  ^o  ( B  .o  C ) ) )
45 oveq1 6079 . . . . . . 7  |-  ( A  =  (/)  ->  ( A  ^o  B )  =  ( (/)  ^o  B ) )
4645oveq1d 6087 . . . . . 6  |-  ( A  =  (/)  ->  ( ( A  ^o  B )  ^o  C )  =  ( ( (/)  ^o  B
)  ^o  C )
)
47 oveq1 6079 . . . . . 6  |-  ( A  =  (/)  ->  ( A  ^o  ( B  .o  C ) )  =  ( (/)  ^o  ( B  .o  C ) ) )
4846, 47eqeq12d 2449 . . . . 5  |-  ( A  =  (/)  ->  ( ( ( A  ^o  B
)  ^o  C )  =  ( A  ^o  ( B  .o  C
) )  <->  ( ( (/) 
^o  B )  ^o  C )  =  (
(/)  ^o  ( B  .o  C ) ) ) )
4944, 48syl5ibr 213 . . . 4  |-  ( A  =  (/)  ->  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( A  ^o  B )  ^o  C
)  =  ( A  ^o  ( B  .o  C ) ) ) )
5049impcom 420 . . 3  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  A  =  (/) )  ->  ( ( A  ^o  B )  ^o  C )  =  ( A  ^o  ( B  .o  C ) ) )
51 oveq1 6079 . . . . . . . . 9  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( A  ^o  B )  =  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  B ) )
5251oveq1d 6087 . . . . . . . 8  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( A  ^o  B )  ^o  C )  =  ( ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  B )  ^o  C ) )
53 oveq1 6079 . . . . . . . 8  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( A  ^o  ( B  .o  C
) )  =  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  ( B  .o  C ) ) )
5452, 53eqeq12d 2449 . . . . . . 7  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( ( A  ^o  B )  ^o  C )  =  ( A  ^o  ( B  .o  C ) )  <-> 
( ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  ^o  B )  ^o  C )  =  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  ( B  .o  C ) ) ) )
5554imbi2d 308 . . . . . 6  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( ( B  e.  On  /\  C  e.  On )  ->  ( ( A  ^o  B )  ^o  C
)  =  ( A  ^o  ( B  .o  C ) ) )  <-> 
( ( B  e.  On  /\  C  e.  On )  ->  (
( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  B )  ^o  C )  =  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  ( B  .o  C ) ) ) ) )
56 eleq1 2495 . . . . . . . . . 10  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( A  e.  On  <->  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  e.  On ) )
57 eleq2 2496 . . . . . . . . . 10  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( (/)  e.  A  <->  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o ) ) )
5856, 57anbi12d 692 . . . . . . . . 9  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( A  e.  On  /\  (/)  e.  A
)  <->  ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  e.  On  /\  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o ) ) ) )
59 eleq1 2495 . . . . . . . . . 10  |-  ( 1o  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( 1o  e.  On 
<->  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  e.  On ) )
60 eleq2 2496 . . . . . . . . . 10  |-  ( 1o  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( (/)  e.  1o  <->  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o ) ) )
6159, 60anbi12d 692 . . . . . . . . 9  |-  ( 1o  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( 1o  e.  On  /\  (/)  e.  1o ) 
<->  ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  e.  On  /\  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o ) ) ) )
62 1on 6722 . . . . . . . . . 10  |-  1o  e.  On
63 0lt1o 6739 . . . . . . . . . 10  |-  (/)  e.  1o
6462, 63pm3.2i 442 . . . . . . . . 9  |-  ( 1o  e.  On  /\  (/)  e.  1o )
6558, 61, 64elimhyp 3779 . . . . . . . 8  |-  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  e.  On  /\  (/)  e.  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o ) )
6665simpli 445 . . . . . . 7  |-  if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  e.  On
6765simpri 449 . . . . . . 7  |-  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )
6866, 67oeoelem 6832 . . . . . 6  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  ^o  B )  ^o  C )  =  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  ( B  .o  C ) ) )
6955, 68dedth 3772 . . . . 5  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( ( B  e.  On  /\  C  e.  On )  ->  (
( A  ^o  B
)  ^o  C )  =  ( A  ^o  ( B  .o  C
) ) ) )
7069imp 419 . . . 4  |-  ( ( ( A  e.  On  /\  (/)  e.  A )  /\  ( B  e.  On  /\  C  e.  On ) )  ->  ( ( A  ^o  B )  ^o  C )  =  ( A  ^o  ( B  .o  C ) ) )
7170an32s 780 . . 3  |-  ( ( ( A  e.  On  /\  ( B  e.  On  /\  C  e.  On ) )  /\  (/)  e.  A
)  ->  ( ( A  ^o  B )  ^o  C )  =  ( A  ^o  ( B  .o  C ) ) )
7250, 71oe0lem 6748 . 2  |-  ( ( A  e.  On  /\  ( B  e.  On  /\  C  e.  On ) )  ->  ( ( A  ^o  B )  ^o  C )  =  ( A  ^o  ( B  .o  C ) ) )
73723impb 1149 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  ^o  B
)  ^o  C )  =  ( A  ^o  ( B  .o  C
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   (/)c0 3620   ifcif 3731   Oncon0 4573  (class class class)co 6072   1oc1o 6708    .o comu 6713    ^o coe 6714
This theorem is referenced by:  infxpenc  7888
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-recs 6624  df-rdg 6659  df-1o 6715  df-2o 6716  df-oadd 6719  df-omul 6720  df-oexp 6721
  Copyright terms: Public domain W3C validator